An Integrated Aquifer Management Approach for Aridification-Affected Agricultural Area, Shengeldy-Kazakhstan

Ongoing water-resource depletion is a common trend in southeastern Kazakhstan and in most of Central Asia, making the use of drainage water for freshwater preservation and groundwater recharge a key strategy for sustainable agriculture. Since the Ily River inflow began to decrease, groundwater level...

Full description

Bibliographic Details
Main Authors: Vladimir Mirlas, Assyl Makyzhanova, Vitaly Kulagin, Erghan Kuldeev, Yaakov Anker
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/13/17/2357
Description
Summary:Ongoing water-resource depletion is a common trend in southeastern Kazakhstan and in most of Central Asia, making the use of drainage water for freshwater preservation and groundwater recharge a key strategy for sustainable agriculture. Since the Ily River inflow began to decrease, groundwater levels in the Shengeldy study area site have fallen below the drainage pipes. As such, our main research hypothesis was that owing to drainage infiltration, the regional shallow aquifer can be used as an effective additional water source for moistening crop root systems during the irrigation period. The MODFLOW groundwater flow model was used to simulate and quantitatively assess the combined hydrogeological and irrigation conditions of artificial groundwater recharge both from the subsurface drainage and as an additional source for irrigation. The field study showed that the additional groundwater table elevation will reach approximately 1.5 m under the field drainage system and that the additional groundwater recharge influence zone will develop up to 300–350 m from the drains. The MODFLOW simulation together with full-scale experimental studies suggests that under certain conditions drainage water can be applied both as an additional source of irrigation and for aquifer sustainable maintenance.
ISSN:2073-4441