Dynamic Simulation of Deposition Processes of Spacecraft Molecular Contamination

Accurate simulation and calculation of the deposition of outgassing molecule can shorten the cycle and reduce the cost of vacuum tests on satellites. It also provides a reference for contamination protection design by systems engineers. In this study, the molecular outgassing, transport and depositi...

Full description

Bibliographic Details
Main Authors: Jia Qiao*, Shengsheng Yang, Jianjun Li, Xing Guo, Yi Wang
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2021-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/366039
Description
Summary:Accurate simulation and calculation of the deposition of outgassing molecule can shorten the cycle and reduce the cost of vacuum tests on satellites. It also provides a reference for contamination protection design by systems engineers. In this study, the molecular outgassing, transport and deposition processes were simulated by diffusion theory, the angle coefficient method, and the first-order desorption equation, respectively. The simulation results were consistent with the test data trends, but deviated from the test values. Given the effect of initial molecular outgassing rate, diffusion coefficient and residence time on the deposition mass, it was surmised that considering the molecular species and the weight mass rate would improve the calculation result. These considerations indeed improved the numerical simulations of high-vacuum contamination.
ISSN:1330-3651
1848-6339