Impact of Lorentz Force in Thermally Developed Pulsatile Micropolar Fluid Flow in a Constricted Channel

This work aimed to analyze the heat transfer of micropolar fluid flow in a constricted channel influenced by thermal radiation and the Lorentz force. A finite difference-based flow solver, on a Cartesian grid, was used for the numerical solution after transforming the governing equations into the vo...

Full description

Bibliographic Details
Main Authors: Muhammad Umar, Amjad Ali, Zainab Bukhari, Gullnaz Shahzadi, Arshad Saleem
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/8/2173
Description
Summary:This work aimed to analyze the heat transfer of micropolar fluid flow in a constricted channel influenced by thermal radiation and the Lorentz force. A finite difference-based flow solver, on a Cartesian grid, was used for the numerical solution after transforming the governing equations into the vorticity-stream function form. The impact of various emerging parameters on the wall shear stress, axial velocity, micro-rotation velocity and temperature profiles is discussed in this paper. The temperature profile is observed to have an inciting trend towards the thermal radiation, whereas it has a declining trend towards the Hartman and Prandtl numbers. The axial velocity profile has an inciting trend towards the Hartman number, whereas it has a declining trend towards the micropolar parameter and Reynolds number. The micro-rotation velocity escalates with the micropolar parameter and Hartman number, whereas it de-escalates with the Reynolds number. The Nusselt number is observed to have a direct relationship with the Prandtl and Reynolds numbers.
ISSN:1996-1073