The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantic...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/10/1683 |
id |
doaj-39873d8c54b049779f5e249d2077e617 |
---|---|
record_format |
Article |
spelling |
doaj-39873d8c54b049779f5e249d2077e6172020-11-25T02:50:42ZengMDPI AGMathematics2227-73902020-10-0181683168310.3390/math8101683The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-GasYuri Suhov0Mark Kelbert1Izabella Stuhl2Department of Pure Mathematics and Mathematical Statistics , University of Cambridge, CB3 OWS Cambridge, UKLaboratory of Stochastic Analysis, National Research University the Higher School of Economics, 101000 Moscow, RussiaMathematics Department, Penn State University, University Park, State College, PA 16802, USAThis paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula>. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a `box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter <inline-formula><math display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer.https://www.mdpi.com/2227-7390/8/10/1683bosonic quantum systemHamiltonianLaplaciantwo-body interactionfinite-range potentialhard core |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuri Suhov Mark Kelbert Izabella Stuhl |
spellingShingle |
Yuri Suhov Mark Kelbert Izabella Stuhl The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas Mathematics bosonic quantum system Hamiltonian Laplacian two-body interaction finite-range potential hard core |
author_facet |
Yuri Suhov Mark Kelbert Izabella Stuhl |
author_sort |
Yuri Suhov |
title |
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas |
title_short |
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas |
title_full |
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas |
title_fullStr |
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas |
title_full_unstemmed |
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas |
title_sort |
feynman–kac representation and dobrushin–lanford–ruelle states of a quantum bose-gas |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-10-01 |
description |
This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula>. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a `box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter <inline-formula><math display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer. |
topic |
bosonic quantum system Hamiltonian Laplacian two-body interaction finite-range potential hard core |
url |
https://www.mdpi.com/2227-7390/8/10/1683 |
work_keys_str_mv |
AT yurisuhov thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas AT markkelbert thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas AT izabellastuhl thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas AT yurisuhov feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas AT markkelbert feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas AT izabellastuhl feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas |
_version_ |
1724737021187981312 |