The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas

This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantic...

Full description

Bibliographic Details
Main Authors: Yuri Suhov, Mark Kelbert, Izabella Stuhl
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1683
id doaj-39873d8c54b049779f5e249d2077e617
record_format Article
spelling doaj-39873d8c54b049779f5e249d2077e6172020-11-25T02:50:42ZengMDPI AGMathematics2227-73902020-10-0181683168310.3390/math8101683The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-GasYuri Suhov0Mark Kelbert1Izabella Stuhl2Department of Pure Mathematics and Mathematical Statistics , University of Cambridge, CB3 OWS Cambridge, UKLaboratory of Stochastic Analysis, National Research University the Higher School of Economics, 101000 Moscow, RussiaMathematics Department, Penn State University, University Park, State College, PA 16802, USAThis paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula>. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a `box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter <inline-formula><math display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer.https://www.mdpi.com/2227-7390/8/10/1683bosonic quantum systemHamiltonianLaplaciantwo-body interactionfinite-range potentialhard core
collection DOAJ
language English
format Article
sources DOAJ
author Yuri Suhov
Mark Kelbert
Izabella Stuhl
spellingShingle Yuri Suhov
Mark Kelbert
Izabella Stuhl
The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
Mathematics
bosonic quantum system
Hamiltonian
Laplacian
two-body interaction
finite-range potential
hard core
author_facet Yuri Suhov
Mark Kelbert
Izabella Stuhl
author_sort Yuri Suhov
title The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
title_short The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
title_full The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
title_fullStr The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
title_full_unstemmed The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas
title_sort feynman–kac representation and dobrushin–lanford–ruelle states of a quantum bose-gas
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-10-01
description This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula>. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a `box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter <inline-formula><math display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer.
topic bosonic quantum system
Hamiltonian
Laplacian
two-body interaction
finite-range potential
hard core
url https://www.mdpi.com/2227-7390/8/10/1683
work_keys_str_mv AT yurisuhov thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
AT markkelbert thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
AT izabellastuhl thefeynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
AT yurisuhov feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
AT markkelbert feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
AT izabellastuhl feynmankacrepresentationanddobrushinlanfordruellestatesofaquantumbosegas
_version_ 1724737021187981312