The Feynman–Kac Representation and Dobrushin–Lanford–Ruelle States of a Quantum Bose-Gas

This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantic...

Full description

Bibliographic Details
Main Authors: Yuri Suhov, Mark Kelbert, Izabella Stuhl
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/10/1683
Description
Summary:This paper focuses on infinite-volume bosonic states for a quantum particle system (a quantum gas) in <inline-formula><math display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>d</mi></msup></semantics></math></inline-formula>. The kinetic energy part of the Hamiltonian is the standard Laplacian (with a boundary condition at the border of a `box’). The particles interact with each other through a two-body finite-range potential depending on the distance between them and featuring a hard core of diameter <inline-formula><math display="inline"><semantics><mrow><mi>a</mi><mo>></mo><mn>0</mn></mrow></semantics></math></inline-formula>. We introduce a class of so-called FK-DLR functionals containing all limiting Gibbs states of the system. As a justification of this concept, we prove that for <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></semantics></math></inline-formula>, any FK-DLR functional is shift-invariant, regardless of whether it is unique or not. This yields a quantum analog of results previously achieved by Richthammer.
ISSN:2227-7390