Global Stability Analysis for Periodic Solution in Discontinuous Neural Networks with Nonlinear Growth Activations

This paper considers a new class of additive neural networks where the neuron activations are modelled by discontinuous functions with nonlinear growth. By Leray-Schauder alternative theorem in differential inclusion theory, matrix theory, and generalized Lyapunov approach, a general result is deriv...

Full description

Bibliographic Details
Main Authors: Yingwei Li, Huaiqin Wu
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Advances in Difference Equations
Online Access:http://dx.doi.org/10.1155/2009/798685
Description
Summary:This paper considers a new class of additive neural networks where the neuron activations are modelled by discontinuous functions with nonlinear growth. By Leray-Schauder alternative theorem in differential inclusion theory, matrix theory, and generalized Lyapunov approach, a general result is derived which ensures the existence and global asymptotical stability of a unique periodic solution for such neural networks. The obtained results can be applied to neural networks with a broad range of activation functions assuming neither boundedness nor monotonicity, and also show that Forti's conjecture for discontinuous neural networks with nonlinear growth activations is true.
ISSN:1687-1839
1687-1847