Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang
Background Ding Chuan Tang (DCT), a traditional Chinese herbal formula, has been consistently prescribed for the therapeutic management of wheezing and asthma-related indications since the Song Dynasty (960–1279 AD). This study aimed to identify molecular network pharmacology connections to understa...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PeerJ Inc.
2020-03-01
|
Series: | PeerJ |
Subjects: | |
Online Access: | https://peerj.com/articles/8685.pdf |
id |
doaj-395822b93dd649799a19add1de6b3ef5 |
---|---|
record_format |
Article |
spelling |
doaj-395822b93dd649799a19add1de6b3ef52020-11-24T21:41:26ZengPeerJ Inc.PeerJ2167-83592020-03-018e868510.7717/peerj.8685Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan TangAllison Clyne0Liping Yang1Ming Yang2Brian May3Angela Wei Hong Yang4Chinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, AustraliaDepartment of Pharmacy, Beijing Hospital, Beijing, ChinaNational Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, ChinaChinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, AustraliaChinese Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, AustraliaBackground Ding Chuan Tang (DCT), a traditional Chinese herbal formula, has been consistently prescribed for the therapeutic management of wheezing and asthma-related indications since the Song Dynasty (960–1279 AD). This study aimed to identify molecular network pharmacology connections to understand the biological asthma-linked mechanisms of action of DCT and potentially identify novel avenues for asthma drug development. Methods Employing molecular docking (AutoDock Vina) and computational analysis (Cytoscape 3.6.0) strategies for DCT compounds permitted examination of docking connections for proteins that were targets of DCT compounds and asthma genes. These identified protein targets were further analyzed to establish and interpret network connections associated with asthma disease pathways. Results A total of 396 DCT compounds and 234 asthma genes were identified through database search. Computational molecular docking of DCT compounds identified five proteins (ESR1, KDR, LTA4H, PDE4D and PPARG) mutually targeted by asthma genes and DCT compounds and 155 docking connections associated with cellular pathways involved in the biological mechanisms of asthma. Conclusions DCT compounds directly target biological pathways connected with the pathogenesis of asthma including inflammatory and metabolic signaling pathways.https://peerj.com/articles/8685.pdfHerbal medicineComplementary medicineNatural productAsthmaRespiratory diseaseNetwork pharmacology |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Allison Clyne Liping Yang Ming Yang Brian May Angela Wei Hong Yang |
spellingShingle |
Allison Clyne Liping Yang Ming Yang Brian May Angela Wei Hong Yang Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang PeerJ Herbal medicine Complementary medicine Natural product Asthma Respiratory disease Network pharmacology |
author_facet |
Allison Clyne Liping Yang Ming Yang Brian May Angela Wei Hong Yang |
author_sort |
Allison Clyne |
title |
Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang |
title_short |
Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang |
title_full |
Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang |
title_fullStr |
Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang |
title_full_unstemmed |
Molecular docking and network connections of active compounds from the classical herbal formula Ding Chuan Tang |
title_sort |
molecular docking and network connections of active compounds from the classical herbal formula ding chuan tang |
publisher |
PeerJ Inc. |
series |
PeerJ |
issn |
2167-8359 |
publishDate |
2020-03-01 |
description |
Background Ding Chuan Tang (DCT), a traditional Chinese herbal formula, has been consistently prescribed for the therapeutic management of wheezing and asthma-related indications since the Song Dynasty (960–1279 AD). This study aimed to identify molecular network pharmacology connections to understand the biological asthma-linked mechanisms of action of DCT and potentially identify novel avenues for asthma drug development. Methods Employing molecular docking (AutoDock Vina) and computational analysis (Cytoscape 3.6.0) strategies for DCT compounds permitted examination of docking connections for proteins that were targets of DCT compounds and asthma genes. These identified protein targets were further analyzed to establish and interpret network connections associated with asthma disease pathways. Results A total of 396 DCT compounds and 234 asthma genes were identified through database search. Computational molecular docking of DCT compounds identified five proteins (ESR1, KDR, LTA4H, PDE4D and PPARG) mutually targeted by asthma genes and DCT compounds and 155 docking connections associated with cellular pathways involved in the biological mechanisms of asthma. Conclusions DCT compounds directly target biological pathways connected with the pathogenesis of asthma including inflammatory and metabolic signaling pathways. |
topic |
Herbal medicine Complementary medicine Natural product Asthma Respiratory disease Network pharmacology |
url |
https://peerj.com/articles/8685.pdf |
work_keys_str_mv |
AT allisonclyne moleculardockingandnetworkconnectionsofactivecompoundsfromtheclassicalherbalformuladingchuantang AT lipingyang moleculardockingandnetworkconnectionsofactivecompoundsfromtheclassicalherbalformuladingchuantang AT mingyang moleculardockingandnetworkconnectionsofactivecompoundsfromtheclassicalherbalformuladingchuantang AT brianmay moleculardockingandnetworkconnectionsofactivecompoundsfromtheclassicalherbalformuladingchuantang AT angelaweihongyang moleculardockingandnetworkconnectionsofactivecompoundsfromtheclassicalherbalformuladingchuantang |
_version_ |
1725921971151044608 |