Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES
Superconducting Magnetic Energy Storage (SMES) is an exceedingly promising energy storage device for its cycle efficiency and fast response. Though the ubiquitous utilization of SMES device is restricted because of the immense cost of cryogenic refrigeration system to sustain the superconducting sta...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
V.N. Karazin Kharkiv National University Publishing
2020-02-01
|
Series: | East European Journal of Physics |
Subjects: | |
Online Access: | https://periodicals.karazin.ua/eejp/article/view/15456 |
id |
doaj-395723f71a1b4f0cbba0668e79c29087 |
---|---|
record_format |
Article |
spelling |
doaj-395723f71a1b4f0cbba0668e79c290872020-11-25T03:30:57ZengV.N. Karazin Kharkiv National University PublishingEast European Journal of Physics2312-43342312-45392020-02-01111112010.26565/2312-4334-2020-1-1015456Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMESMd. Abdullah Al Zaman0M.R. Islam1H.M.A.R. Maruf2Department of Textile Engineering, Northern University Bangladesh, Dhaka, BangladeshDepartment of Physics, University of Chittagong, Chittagong, BangladeshDepartment of Physics, Chittagong University of Engineering and Technology, Chittagong, BangladeshSuperconducting Magnetic Energy Storage (SMES) is an exceedingly promising energy storage device for its cycle efficiency and fast response. Though the ubiquitous utilization of SMES device is restricted because of the immense cost of cryogenic refrigeration system to sustain the superconducting state but with the continuous evolution of high Tc superconductors, SMES is turning into a major contender to the existing energy storage devices in the future. Among its several parts, the superconducting coil is considered to be the most crucial segment of this technology and the inductance generated in the coil determines the quantity of stored energy. In this paper, the possible geometrical configurations of SMES coil have been demonstrated. High Tc superconducting tapes are usually employed to form these configurations worldwide. BSCCO (Bismuth strontium calcium copper oxide)-2223 tape superconductor has been considered for studying the conceptual designs of superconducting coil of SMES. Before estimating the results, the value of critical current at different magnetic field densities and temperatures have been addressed through the study of superconducting tape characterization. Numerical results and the relationship among the several parameters for both the solenoid and toroid configurations in different specifications have been presented. Based on the results, the size ratio in solenoid and the mean toroid diameter in toroid arrangement is found to play the vigorous roles in the generation of inductance and hence the energy storage. The results also match the propensity of other studies. Suggestions for maximum energy gain from a specific solenoid configuration have been provided. Future research scopes with alternative superconducting tapes and limitations of this study have been briefly conferred.https://periodicals.karazin.ua/eejp/article/view/15456smesenergy storage devicesolenoidtoroid |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Md. Abdullah Al Zaman M.R. Islam H.M.A.R. Maruf |
spellingShingle |
Md. Abdullah Al Zaman M.R. Islam H.M.A.R. Maruf Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES East European Journal of Physics smes energy storage device solenoid toroid |
author_facet |
Md. Abdullah Al Zaman M.R. Islam H.M.A.R. Maruf |
author_sort |
Md. Abdullah Al Zaman |
title |
Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES |
title_short |
Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES |
title_full |
Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES |
title_fullStr |
Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES |
title_full_unstemmed |
Study on Conceptual Designs of Superconducting Coil for Energy Storage in SMES |
title_sort |
study on conceptual designs of superconducting coil for energy storage in smes |
publisher |
V.N. Karazin Kharkiv National University Publishing |
series |
East European Journal of Physics |
issn |
2312-4334 2312-4539 |
publishDate |
2020-02-01 |
description |
Superconducting Magnetic Energy Storage (SMES) is an exceedingly promising energy storage device for its cycle efficiency and fast response. Though the ubiquitous utilization of SMES device is restricted because of the immense cost of cryogenic refrigeration system to sustain the superconducting state but with the continuous evolution of high Tc superconductors, SMES is turning into a major contender to the existing energy storage devices in the future. Among its several parts, the superconducting coil is considered to be the most crucial segment of this technology and the inductance generated in the coil determines the quantity of stored energy. In this paper, the possible geometrical configurations of SMES coil have been demonstrated. High Tc superconducting tapes are usually employed to form these configurations worldwide. BSCCO (Bismuth strontium calcium copper oxide)-2223 tape superconductor has been considered for studying the conceptual designs of superconducting coil of SMES. Before estimating the results, the value of critical current at different magnetic field densities and temperatures have been addressed through the study of superconducting tape characterization. Numerical results and the relationship among the several parameters for both the solenoid and toroid configurations in different specifications have been presented. Based on the results, the size ratio in solenoid and the mean toroid diameter in toroid arrangement is found to play the vigorous roles in the generation of inductance and hence the energy storage. The results also match the propensity of other studies. Suggestions for maximum energy gain from a specific solenoid configuration have been provided. Future research scopes with alternative superconducting tapes and limitations of this study have been briefly conferred. |
topic |
smes energy storage device solenoid toroid |
url |
https://periodicals.karazin.ua/eejp/article/view/15456 |
work_keys_str_mv |
AT mdabdullahalzaman studyonconceptualdesignsofsuperconductingcoilforenergystorageinsmes AT mrislam studyonconceptualdesignsofsuperconductingcoilforenergystorageinsmes AT hmarmaruf studyonconceptualdesignsofsuperconductingcoilforenergystorageinsmes |
_version_ |
1724574558006018048 |