Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method
Social Networking sites have become popular and common places for sharing wide range of emotions through short texts. These emotions include happiness, sadness, anxiety, fear, etc. Analyzing short texts helps in identifying the sentiment expressed by the crowd. Sentiment Analysis on IMDb movie revie...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad Internacional de La Rioja (UNIR)
2019-06-01
|
Series: | International Journal of Interactive Multimedia and Artificial Intelligence |
Subjects: | |
Online Access: | http://www.ijimai.org/journal/node/2775 |
id |
doaj-392679cc9e854dc7ab62d46ae4074258 |
---|---|
record_format |
Article |
spelling |
doaj-392679cc9e854dc7ab62d46ae40742582020-11-25T00:21:14ZengUniversidad Internacional de La Rioja (UNIR)International Journal of Interactive Multimedia and Artificial Intelligence1989-16601989-16602019-06-015510911410.9781/ijimai.2018.12.005ijimai.2018.12.005Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction MethodKeerthi KumarB.S. HarishH. K. DarshanSocial Networking sites have become popular and common places for sharing wide range of emotions through short texts. These emotions include happiness, sadness, anxiety, fear, etc. Analyzing short texts helps in identifying the sentiment expressed by the crowd. Sentiment Analysis on IMDb movie reviews identifies the overall sentiment or opinion expressed by a reviewer towards a movie. Many researchers are working on pruning the sentiment analysis model that clearly identifies and distinguishes between a positive review and a negative review. In the proposed work, we show that the use of Hybrid features obtained by concatenating Machine Learning features (TF, TF-IDF) with Lexicon features (Positive-Negative word count, Connotation) gives better results both in terms of accuracy and complexity when tested against classifiers like SVM, Naïve Bayes, KNN and Maximum Entropy. The proposed model clearly differentiates between a positive review and negative review. Since understanding the context of the reviews plays an important role in classification, using hybrid features helps in capturing the context of the movie reviews and hence increases the accuracy of classification.http://www.ijimai.org/journal/node/2775ClassificationHybrid FeaturesSentiment AnalysisShort Text |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Keerthi Kumar B.S. Harish H. K. Darshan |
spellingShingle |
Keerthi Kumar B.S. Harish H. K. Darshan Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method International Journal of Interactive Multimedia and Artificial Intelligence Classification Hybrid Features Sentiment Analysis Short Text |
author_facet |
Keerthi Kumar B.S. Harish H. K. Darshan |
author_sort |
Keerthi Kumar |
title |
Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method |
title_short |
Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method |
title_full |
Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method |
title_fullStr |
Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method |
title_full_unstemmed |
Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method |
title_sort |
sentiment analysis on imdb movie reviews using hybrid feature extraction method |
publisher |
Universidad Internacional de La Rioja (UNIR) |
series |
International Journal of Interactive Multimedia and Artificial Intelligence |
issn |
1989-1660 1989-1660 |
publishDate |
2019-06-01 |
description |
Social Networking sites have become popular and common places for sharing wide range of emotions through short texts. These emotions include happiness, sadness, anxiety, fear, etc. Analyzing short texts helps in identifying the sentiment expressed by the crowd. Sentiment Analysis on IMDb movie reviews identifies the overall sentiment or opinion expressed by a reviewer towards a movie. Many researchers are working on pruning the sentiment analysis model that clearly identifies and distinguishes between a positive review and a negative review. In the proposed work, we show that the use of Hybrid features obtained by concatenating Machine Learning features (TF, TF-IDF) with Lexicon features (Positive-Negative word count, Connotation) gives better results both in terms of accuracy and complexity when tested against classifiers like SVM, Naïve Bayes, KNN and Maximum Entropy. The proposed model clearly differentiates between a positive review and negative review. Since understanding the context of the reviews plays an important role in classification, using hybrid features helps in capturing the context of the movie reviews and hence increases the accuracy of classification. |
topic |
Classification Hybrid Features Sentiment Analysis Short Text |
url |
http://www.ijimai.org/journal/node/2775 |
work_keys_str_mv |
AT keerthikumar sentimentanalysisonimdbmoviereviewsusinghybridfeatureextractionmethod AT bsharish sentimentanalysisonimdbmoviereviewsusinghybridfeatureextractionmethod AT hkdarshan sentimentanalysisonimdbmoviereviewsusinghybridfeatureextractionmethod |
_version_ |
1725363145771319296 |