Research on PMF Model Based on BP Neural Network Ensemble Learning Bagging and Fuzzy Clustering

Probability matrix factorization model can be used to solve the problem of high-dimensional sparsity of user and rating data in the recommender systems. However, most of the existing methods use the user to model the item rating, ignoring the relationship between the user and the item, so the accura...

Full description

Bibliographic Details
Main Authors: Zhengjin Zhang, Guilin Huang, Yong Zhang, Siwei Wei, Baojin Shi, Jiabao Jiang, Baohua Liang
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/9985894
Description
Summary:Probability matrix factorization model can be used to solve the problem of high-dimensional sparsity of user and rating data in the recommender systems. However, most of the existing methods use the user to model the item rating, ignoring the relationship between the user and the item, so the accuracy of user-item rating prediction is still low. Therefore, this paper proposes a probabilistic matrix factorization model based on BP neural network ensemble learning, bagging, and fuzzy clustering. Firstly, the membership function of fuzzy clustering and the selection of cluster center are used to calculate the user-item rating matrix; secondly, BP neural network trains the user-item scoring matrix after clustering, further improving the accuracy of scoring prediction; finally, the bagging method in ensemble learning is introduced, which takes the number of user-item scores as the base learner, trains the base learner through BP neural network, and finally obtains the score prediction through the voting results, which improves the stability of the model. Compared with the existing PMF models, the root mean square error of the PMF model after fuzzy clustering is increased by 9.27% and 3.95%, and the average absolute error is increased by 21.14% and 1.11%, respectively; then, the performance of the first mock exam is introduced. The root mean square error of the ensemble method is increased by 4.02% and 0.42%, respectively, compared with the existing single model. Finally, the weights of BP neural network training based learner are introduced to improve the accuracy of the model, which also verifies the universality of the model.
ISSN:1099-0526