Existence of Ulam Stability for Iterative Fractional Differential Equations Based on Fractional Entropy
In this study, we introduce conditions for the existence of solutions for an iterative functional differential equation of fractional order. We prove that the solutions of the above class of fractional differential equations are bounded by Tsallis entropy. The method depends on the concept of Hyers-...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2015-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | http://www.mdpi.com/1099-4300/17/5/3172 |
Summary: | In this study, we introduce conditions for the existence of solutions for an iterative functional differential equation of fractional order. We prove that the solutions of the above class of fractional differential equations are bounded by Tsallis entropy. The method depends on the concept of Hyers-Ulam stability. The arbitrary order is suggested in the sense of Riemann-Liouville calculus. |
---|---|
ISSN: | 1099-4300 |