Robust stability of patterned linear systems

For a Hurwitz stable matrix $A\in \mathbb{R}^{n\times n}$, we calculate the real structured radius of stability for $A$ with a perturbation $P=B\Delta (t)C$, where $A, B, C$, $ \Delta (t)$ form a patterned quadruple of matrices; i.e., they are polynomials of a common matrix of simple structur...

Full description

Bibliographic Details
Main Author: Henry Gonzalez
Format: Article
Language:English
Published: Texas State University 2013-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/193/abstr.html
id doaj-38e13df644c646379937736e27046535
record_format Article
spelling doaj-38e13df644c646379937736e270465352020-11-24T23:06:13ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-08-012013193,18Robust stability of patterned linear systemsHenry Gonzalez0 Obuda Univ., Budapest, Becsiut, Hungary For a Hurwitz stable matrix $A\in \mathbb{R}^{n\times n}$, we calculate the real structured radius of stability for $A$ with a perturbation $P=B\Delta (t)C$, where $A, B, C$, $ \Delta (t)$ form a patterned quadruple of matrices; i.e., they are polynomials of a common matrix of simple structure $M \in \mathbb{R}^{n\times n}$.http://ejde.math.txstate.edu/Volumes/2013/193/abstr.htmlRobust stabilitystability radius
collection DOAJ
language English
format Article
sources DOAJ
author Henry Gonzalez
spellingShingle Henry Gonzalez
Robust stability of patterned linear systems
Electronic Journal of Differential Equations
Robust stability
stability radius
author_facet Henry Gonzalez
author_sort Henry Gonzalez
title Robust stability of patterned linear systems
title_short Robust stability of patterned linear systems
title_full Robust stability of patterned linear systems
title_fullStr Robust stability of patterned linear systems
title_full_unstemmed Robust stability of patterned linear systems
title_sort robust stability of patterned linear systems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2013-08-01
description For a Hurwitz stable matrix $A\in \mathbb{R}^{n\times n}$, we calculate the real structured radius of stability for $A$ with a perturbation $P=B\Delta (t)C$, where $A, B, C$, $ \Delta (t)$ form a patterned quadruple of matrices; i.e., they are polynomials of a common matrix of simple structure $M \in \mathbb{R}^{n\times n}$.
topic Robust stability
stability radius
url http://ejde.math.txstate.edu/Volumes/2013/193/abstr.html
work_keys_str_mv AT henrygonzalez robuststabilityofpatternedlinearsystems
_version_ 1725623642517143552