Ethanol Extract from Ulva prolifera Prevents High-Fat Diet-Induced Insulin Resistance, Oxidative Stress, and Inflammation Response in Mice
Ulva prolifera is the major causative species in the green tide, a serious marine ecological disaster, which bloomed in the Yellow Sea and the Bohai Sea of China. However, it is also a popular edible seaweed and its extracts exerts anti-inflammatory and antioxidant effects. The present study investi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2018/1374565 |
Summary: | Ulva prolifera is the major causative species in the green tide, a serious marine ecological disaster, which bloomed in the Yellow Sea and the Bohai Sea of China. However, it is also a popular edible seaweed and its extracts exerts anti-inflammatory and antioxidant effects. The present study investigated the effects of ethanol extract of U. prolifera (EUP) on insulin sensitivity, inflammatory response, and oxidative stress in high-fat-diet- (HFD-) treated mice. HFD-treated mice obtained drinking water containing 2% or 5% EUP. The results showed that EUP supplementation significantly prevented HFD-induced weight gain of liver and fat. EUP supplementation also improved glucose tolerance and insulin resistance in HFD-treated mice. Moreover, EUP supplementation prevented the increased expression of genes involved in triglyceride synthesis and proinflammatory genes and the decreased expression of genes involved in fatty acid oxidation in liver of HFD-treated mice. Furthermore, EUP supplementation decreased reactive oxygen species content, while increasing glutathione content and glutathione peroxidase activity in HFD-treated mice. In conclusion, our results showed that EUP improved insulin resistance and had antilipid accumulation and anti-inflammatory and antioxidative effects on HFD-treated mice. We suggested that U. prolifera extracts may be regarded as potential candidate for the prevention of nonalcoholic fatty liver disease. |
---|---|
ISSN: | 2314-6133 2314-6141 |