Summary: | The ability to achieve high areal capacitance for oxide-based supercapacitor electrodes with high active mass loadings is critical for practical applications. This paper reports the feasibility of the fabrication of Mn<sub>3</sub>O<sub>4</sub>-multiwalled carbon nanotube (MWCNT) composites by the new salting-out method, which allows direct particle transfer from an aqueous synthesis medium to a 2-propanol suspension for the fabrication of advanced Mn<sub>3</sub>O<sub>4</sub>-MWCNT electrodes for supercapacitors. The electrodes show enhanced capacitive performance at high active mass loading due to reduced particle agglomeration and enhanced mixing of the Mn<sub>3</sub>O<sub>4</sub> particles and conductive MWCNT additives. The strategy is based on the multifunctional properties of octanohydroxamic acid, which is used as a capping and dispersing agent for Mn<sub>3</sub>O<sub>4</sub> synthesis and an extractor for particle transfer to the electrode processing medium. Electrochemical studies show that high areal capacitance is achieved at low electrode resistance. The electrodes with an active mass of 40.1 mg cm<sup>−2</sup> show a capacitance of 4.3 F cm<sup>−2</sup> at a scan rate of 2 mV s<sup>−1</sup>. Electron microscopy studies reveal changes in electrode microstructure during charge-discharge cycling, which can explain the increase in capacitance. The salting-out method is promising for the development of advanced nanocomposites for energy storage in supercapacitors.
|