An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment

As the world population is increasing rapidly, food and water demands are the most crucial problem for humanity. In some areas of the world, water or environment is unsuitable for plant growth; hydroponic systems can provide a suitable environment for crop production with effective management of nat...

Full description

Bibliographic Details
Main Authors: Azimbek Khudoyberdiev, Shabir Ahmad, Israr Ullah, DoHyeun Kim
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/2/289
Description
Summary:As the world population is increasing rapidly, food and water demands are the most crucial problem for humanity. In some areas of the world, water or environment is unsuitable for plant growth; hydroponic systems can provide a suitable environment for crop production with effective management of natural resources. Internet of Things paradigm based automated systems has been creating an excellent opportunity for monitoring and controlling agriculture by minimizing the cost and maximizing the profit significantly over the past decade. The reduction of the cost can be achieved by sufficient usage of resources and setting up optimum operational parameters for agricultural devices. This paper presents an optimization scheme with novel objective function for hydroponics environment parameters management with efficient energy consumption. The proposed approach provides optimal energy and resource utilization in the hydroponics system with setting up a working level and operational duration to the actuators. We have developed an optimization scheme with objective function for optimal humidity and water level control based on fuzzy logic, which can support the optimal measurement for crop growth with energy efficiency. Fuzzy logic control is applied for the compromise between actuators working level and operational duration. A real hydroponics environment has been implemented and presented to evaluate the effectiveness of the proposed approach. It can be assessed through the simulation results that the optimization module achieves a signification reduction (18%) in energy consumption as compared to the other scheme.
ISSN:1996-1073