Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series

Fractional calculus image formulas involving various special functions are important for evaluation of generalized integrals and to obtain the solution of differential and integral equations. In this paper, the Saigo’s fractional integral operators involving hypergeometric function in the...

Full description

Bibliographic Details
Main Authors: K.S. Nisar, D.L. Suthar, M. Bohra, S.D. Purohit
Format: Article
Language:English
Published: MDPI AG 2019-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/2/206
id doaj-388bcb22eacb4ddfb42f4921a841c6d2
record_format Article
spelling doaj-388bcb22eacb4ddfb42f4921a841c6d22020-11-24T20:48:14ZengMDPI AGMathematics2227-73902019-02-017220610.3390/math7020206math7020206Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu SeriesK.S. Nisar0D.L. Suthar1M. Bohra2S.D. Purohit3Department of Mathematics, College of Arts &amp; Science-Wadi Al-Dawaser, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser 11991, Saudi ArabiaDepartment of Mathematics, Wollo University, Dessie 1145, EthiopiaDepartment of Mathematics, Govt. Mahila Engg. College, Ajmer 305001, IndiaDepartment of HEAS (Mathematics), Rajasthan Technical University, Kota 324010, IndiaFractional calculus image formulas involving various special functions are important for evaluation of generalized integrals and to obtain the solution of differential and integral equations. In this paper, the Saigo&#8217;s fractional integral operators involving hypergeometric function in the kernel are applied to the product of Srivastava&#8217;s polynomials and the generalized Mathieu series, containing the factor <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>&#955;</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mi>k</mi> </msup> <mo>+</mo> <msup> <mi>c</mi> <mi>k</mi> </msup> <mo>)</mo> </mrow> <mrow> <mo>&#8722;</mo> <mi>&#961;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in its argument. The results are expressed in terms of the generalized hypergeometric function and Hadamard product of the generalized Mathieu series. Corresponding special cases related to the Riemann&#8315;Liouville and Erd&#233;lyi&#8315;Kober fractional integral operators are also considered.https://www.mdpi.com/2227-7390/7/2/206generalized fractional integral operatorsgeneralized Mathieu seriesSrivastava’s polynomialgeneralized hypergeometric series
collection DOAJ
language English
format Article
sources DOAJ
author K.S. Nisar
D.L. Suthar
M. Bohra
S.D. Purohit
spellingShingle K.S. Nisar
D.L. Suthar
M. Bohra
S.D. Purohit
Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
Mathematics
generalized fractional integral operators
generalized Mathieu series
Srivastava’s polynomial
generalized hypergeometric series
author_facet K.S. Nisar
D.L. Suthar
M. Bohra
S.D. Purohit
author_sort K.S. Nisar
title Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
title_short Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
title_full Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
title_fullStr Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
title_full_unstemmed Generalized Fractional Integral Operators Pertaining to the Product of Srivastava’s Polynomials and Generalized Mathieu Series
title_sort generalized fractional integral operators pertaining to the product of srivastava’s polynomials and generalized mathieu series
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-02-01
description Fractional calculus image formulas involving various special functions are important for evaluation of generalized integrals and to obtain the solution of differential and integral equations. In this paper, the Saigo&#8217;s fractional integral operators involving hypergeometric function in the kernel are applied to the product of Srivastava&#8217;s polynomials and the generalized Mathieu series, containing the factor <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>x</mi> <mi>&#955;</mi> </msup> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mi>k</mi> </msup> <mo>+</mo> <msup> <mi>c</mi> <mi>k</mi> </msup> <mo>)</mo> </mrow> <mrow> <mo>&#8722;</mo> <mi>&#961;</mi> </mrow> </msup> </mrow> </semantics> </math> </inline-formula> in its argument. The results are expressed in terms of the generalized hypergeometric function and Hadamard product of the generalized Mathieu series. Corresponding special cases related to the Riemann&#8315;Liouville and Erd&#233;lyi&#8315;Kober fractional integral operators are also considered.
topic generalized fractional integral operators
generalized Mathieu series
Srivastava’s polynomial
generalized hypergeometric series
url https://www.mdpi.com/2227-7390/7/2/206
work_keys_str_mv AT ksnisar generalizedfractionalintegraloperatorspertainingtotheproductofsrivastavaspolynomialsandgeneralizedmathieuseries
AT dlsuthar generalizedfractionalintegraloperatorspertainingtotheproductofsrivastavaspolynomialsandgeneralizedmathieuseries
AT mbohra generalizedfractionalintegraloperatorspertainingtotheproductofsrivastavaspolynomialsandgeneralizedmathieuseries
AT sdpurohit generalizedfractionalintegraloperatorspertainingtotheproductofsrivastavaspolynomialsandgeneralizedmathieuseries
_version_ 1716808558704590848