Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminatin...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-08-01
|
Series: | Hydrology and Earth System Sciences |
Online Access: | http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf |
id |
doaj-388a3466202045d194cf5bcfebdff108 |
---|---|
record_format |
Article |
spelling |
doaj-388a3466202045d194cf5bcfebdff1082020-11-25T00:35:57ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382016-08-012083077309810.5194/hess-20-3077-2016Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrologyC. Rocha0C. Veiga-Pires1J. Scholten2K. Knoeller3D. R. Gröcke4L. Carvalho5J. Anibal6J. Wilson7Biogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandInstitute of Geosciences, University of Kiel, GermanyUFZ, Helmholtz Centre for Environmental Research Leipzig/Halle, GermanyDepartment of Earth Sciences, Durham University, South Road, Durham, County Durham, DH1 3LE, UKBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandNatural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution.<br><br>Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (<i>δ</i><sup>2</sup>H, <i>δ</i><sup>18</sup>O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of ∼ 1.4 × 10<sup>6</sup> m<sup>3</sup> day<sup>−1</sup>. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼ 3.5 times a year), driving an estimated nitrogen (N) load of ∼ 350 Ton N yr<sup>−1</sup> into the system as NO<sub>3</sub><sup>−</sup>. Land-borne SGD could add a further ∼ 61 Ton N yr<sup>−1</sup> to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Rocha C. Veiga-Pires J. Scholten K. Knoeller D. R. Gröcke L. Carvalho J. Anibal J. Wilson |
spellingShingle |
C. Rocha C. Veiga-Pires J. Scholten K. Knoeller D. R. Gröcke L. Carvalho J. Anibal J. Wilson Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology Hydrology and Earth System Sciences |
author_facet |
C. Rocha C. Veiga-Pires J. Scholten K. Knoeller D. R. Gröcke L. Carvalho J. Anibal J. Wilson |
author_sort |
C. Rocha |
title |
Assessing land–ocean connectivity via submarine groundwater discharge (SGD)
in the Ria Formosa Lagoon (Portugal): combining radon measurements and
stable isotope hydrology |
title_short |
Assessing land–ocean connectivity via submarine groundwater discharge (SGD)
in the Ria Formosa Lagoon (Portugal): combining radon measurements and
stable isotope hydrology |
title_full |
Assessing land–ocean connectivity via submarine groundwater discharge (SGD)
in the Ria Formosa Lagoon (Portugal): combining radon measurements and
stable isotope hydrology |
title_fullStr |
Assessing land–ocean connectivity via submarine groundwater discharge (SGD)
in the Ria Formosa Lagoon (Portugal): combining radon measurements and
stable isotope hydrology |
title_full_unstemmed |
Assessing land–ocean connectivity via submarine groundwater discharge (SGD)
in the Ria Formosa Lagoon (Portugal): combining radon measurements and
stable isotope hydrology |
title_sort |
assessing land–ocean connectivity via submarine groundwater discharge (sgd)
in the ria formosa lagoon (portugal): combining radon measurements and
stable isotope hydrology |
publisher |
Copernicus Publications |
series |
Hydrology and Earth System Sciences |
issn |
1027-5606 1607-7938 |
publishDate |
2016-08-01 |
description |
Natural radioactive tracer-based assessments of basin-scale submarine
groundwater discharge (SGD) are well developed. However, SGD takes place in
different modes and the flow and discharge mechanisms involved occur over a
wide range of spatial and temporal scales. Quantifying SGD while
discriminating its source functions therefore remains a major challenge.
However, correctly identifying both the fluid source and composition is
critical. When multiple sources of the tracer of interest are present,
failure to adequately discriminate between them leads to inaccurate
attribution and the resulting uncertainties will affect the reliability of
SGD solute loading estimates. This lack of reliability then extends to the
closure of local biogeochemical budgets, confusing measures aiming to
mitigate pollution.<br><br>Here, we report a multi-tracer study to identify the sources of SGD,
distinguish its component parts and elucidate the mechanisms of their
dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in
Portugal. We combine radon budgets that determine the total SGD (meteoric +
recirculated seawater) in the system with stable isotopes in water
(<i>δ</i><sup>2</sup>H, <i>δ</i><sup>18</sup>O), to specifically identify SGD source
functions and characterize active hydrological pathways in the catchment.
Using this approach, SGD in the Ria Formosa could be separated into two
modes, a net meteoric water input and another involving no net water
transfer, i.e., originating in lagoon water re-circulated through permeable
sediments. The former SGD mode is present occasionally on a multi-annual
timescale, while the latter is a dominant feature of the system. In the
absence of meteoric SGD inputs, seawater recirculation through beach
sediments occurs at a rate of
∼ 1.4 × 10<sup>6</sup> m<sup>3</sup> day<sup>−1</sup>. This implies that the
entire tidal-averaged volume of the lagoon is filtered through local sandy
sediments within 100 days ( ∼ 3.5 times a year), driving an estimated
nitrogen (N) load of ∼ 350 Ton N yr<sup>−1</sup> into the system as
NO<sub>3</sub><sup>−</sup>. Land-borne SGD could add a further
∼ 61 Ton N yr<sup>−1</sup> to the lagoon. The former source is
autochthonous, continuous and responsible for a large fraction (59 %) of
the estimated total N inputs into the system via non-point sources, while the
latter is an occasional allochthonous source capable of driving new
production in the system. |
url |
http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf |
work_keys_str_mv |
AT crocha assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT cveigapires assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT jscholten assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT kknoeller assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT drgrocke assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT lcarvalho assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT janibal assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology AT jwilson assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology |
_version_ |
1725306892713984000 |