Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology

Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminatin...

Full description

Bibliographic Details
Main Authors: C. Rocha, C. Veiga-Pires, J. Scholten, K. Knoeller, D. R. Gröcke, L. Carvalho, J. Anibal, J. Wilson
Format: Article
Language:English
Published: Copernicus Publications 2016-08-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf
id doaj-388a3466202045d194cf5bcfebdff108
record_format Article
spelling doaj-388a3466202045d194cf5bcfebdff1082020-11-25T00:35:57ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382016-08-012083077309810.5194/hess-20-3077-2016Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrologyC. Rocha0C. Veiga-Pires1J. Scholten2K. Knoeller3D. R. Gröcke4L. Carvalho5J. Anibal6J. Wilson7Biogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandInstitute of Geosciences, University of Kiel, GermanyUFZ, Helmholtz Centre for Environmental Research Leipzig/Halle, GermanyDepartment of Earth Sciences, Durham University, South Road, Durham, County Durham, DH1 3LE, UKBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandBiogeochemistry Research Group, Geography Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, IrelandNatural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution.<br><br>Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (<i>δ</i><sup>2</sup>H, <i>δ</i><sup>18</sup>O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of  ∼  1.4  ×  10<sup>6</sup> m<sup>3</sup> day<sup>−1</sup>. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼  3.5 times a year), driving an estimated nitrogen (N) load of  ∼  350 Ton N yr<sup>−1</sup> into the system as NO<sub>3</sub><sup>−</sup>. Land-borne SGD could add a further  ∼  61 Ton N yr<sup>−1</sup> to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf
collection DOAJ
language English
format Article
sources DOAJ
author C. Rocha
C. Veiga-Pires
J. Scholten
K. Knoeller
D. R. Gröcke
L. Carvalho
J. Anibal
J. Wilson
spellingShingle C. Rocha
C. Veiga-Pires
J. Scholten
K. Knoeller
D. R. Gröcke
L. Carvalho
J. Anibal
J. Wilson
Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
Hydrology and Earth System Sciences
author_facet C. Rocha
C. Veiga-Pires
J. Scholten
K. Knoeller
D. R. Gröcke
L. Carvalho
J. Anibal
J. Wilson
author_sort C. Rocha
title Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
title_short Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
title_full Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
title_fullStr Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
title_full_unstemmed Assessing land–ocean connectivity via submarine groundwater discharge (SGD) in the Ria Formosa Lagoon (Portugal): combining radon measurements and stable isotope hydrology
title_sort assessing land–ocean connectivity via submarine groundwater discharge (sgd) in the ria formosa lagoon (portugal): combining radon measurements and stable isotope hydrology
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2016-08-01
description Natural radioactive tracer-based assessments of basin-scale submarine groundwater discharge (SGD) are well developed. However, SGD takes place in different modes and the flow and discharge mechanisms involved occur over a wide range of spatial and temporal scales. Quantifying SGD while discriminating its source functions therefore remains a major challenge. However, correctly identifying both the fluid source and composition is critical. When multiple sources of the tracer of interest are present, failure to adequately discriminate between them leads to inaccurate attribution and the resulting uncertainties will affect the reliability of SGD solute loading estimates. This lack of reliability then extends to the closure of local biogeochemical budgets, confusing measures aiming to mitigate pollution.<br><br>Here, we report a multi-tracer study to identify the sources of SGD, distinguish its component parts and elucidate the mechanisms of their dispersion throughout the Ria Formosa – a seasonally hypersaline lagoon in Portugal. We combine radon budgets that determine the total SGD (meteoric + recirculated seawater) in the system with stable isotopes in water (<i>δ</i><sup>2</sup>H, <i>δ</i><sup>18</sup>O), to specifically identify SGD source functions and characterize active hydrological pathways in the catchment. Using this approach, SGD in the Ria Formosa could be separated into two modes, a net meteoric water input and another involving no net water transfer, i.e., originating in lagoon water re-circulated through permeable sediments. The former SGD mode is present occasionally on a multi-annual timescale, while the latter is a dominant feature of the system. In the absence of meteoric SGD inputs, seawater recirculation through beach sediments occurs at a rate of  ∼  1.4  ×  10<sup>6</sup> m<sup>3</sup> day<sup>−1</sup>. This implies that the entire tidal-averaged volume of the lagoon is filtered through local sandy sediments within 100 days ( ∼  3.5 times a year), driving an estimated nitrogen (N) load of  ∼  350 Ton N yr<sup>−1</sup> into the system as NO<sub>3</sub><sup>−</sup>. Land-borne SGD could add a further  ∼  61 Ton N yr<sup>−1</sup> to the lagoon. The former source is autochthonous, continuous and responsible for a large fraction (59 %) of the estimated total N inputs into the system via non-point sources, while the latter is an occasional allochthonous source capable of driving new production in the system.
url http://www.hydrol-earth-syst-sci.net/20/3077/2016/hess-20-3077-2016.pdf
work_keys_str_mv AT crocha assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT cveigapires assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT jscholten assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT kknoeller assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT drgrocke assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT lcarvalho assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT janibal assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
AT jwilson assessinglandoceanconnectivityviasubmarinegroundwaterdischargesgdintheriaformosalagoonportugalcombiningradonmeasurementsandstableisotopehydrology
_version_ 1725306892713984000