Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS) has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and...

Full description

Bibliographic Details
Main Authors: Michael G. Harrington, Alfred N. Fonteh, Roger G. Biringer, Andreas F. R. Hühmer, Robert P. Cowan
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:Disease Markers
Online Access:http://dx.doi.org/10.1155/2006/241817
Description
Summary:Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS) has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls) with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.
ISSN:0278-0240
1875-8630