Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem

<p/> <p>We consider the boundary value problem <inline-formula><graphic file="1687-2770-2005-576572-i2.gif"/></inline-formula> in <inline-formula><graphic file="1687-2770-2005-576572-i3.gif"/></inline-formula> satisfying <inline-...

Full description

Bibliographic Details
Main Authors: Shivaji R, Chhetri Maya
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2005/576572
id doaj-3866d420e7cd493cb289daadb291ed36
record_format Article
spelling doaj-3866d420e7cd493cb289daadb291ed362020-11-24T22:17:23ZengSpringerOpenBoundary Value Problems1687-27621687-27702005-01-0120053576572Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problemShivaji RChhetri Maya<p/> <p>We consider the boundary value problem <inline-formula><graphic file="1687-2770-2005-576572-i2.gif"/></inline-formula> in <inline-formula><graphic file="1687-2770-2005-576572-i3.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-2770-2005-576572-i4.gif"/></inline-formula> on <inline-formula><graphic file="1687-2770-2005-576572-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2005-576572-i6.gif"/></inline-formula> on <inline-formula><graphic file="1687-2770-2005-576572-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2005-576572-i8.gif"/></inline-formula> is a parameter, <inline-formula><graphic file="1687-2770-2005-576572-i9.gif"/></inline-formula> is a bounded domain in <inline-formula><graphic file="1687-2770-2005-576572-i10.gif"/></inline-formula> with <inline-formula><graphic file="1687-2770-2005-576572-i11.gif"/></inline-formula> boundary <inline-formula><graphic file="1687-2770-2005-576572-i12.gif"/></inline-formula>, and <inline-formula><graphic file="1687-2770-2005-576572-i13.gif"/></inline-formula> for <inline-formula><graphic file="1687-2770-2005-576572-i14.gif"/></inline-formula>. Here, <inline-formula><graphic file="1687-2770-2005-576572-i15.gif"/></inline-formula> is a <inline-formula><graphic file="1687-2770-2005-576572-i16.gif"/></inline-formula> nondecreasing function for some <inline-formula><graphic file="1687-2770-2005-576572-i17.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-2770-2005-576572-i18.gif"/></inline-formula> (semipositone). We establish a range of <inline-formula><graphic file="1687-2770-2005-576572-i19.gif"/></inline-formula> for which the above problem has a positive solution when <inline-formula><graphic file="1687-2770-2005-576572-i20.gif"/></inline-formula> satisfies certain additional conditions. We employ the method of subsuper solutions to obtain the result.</p>http://www.boundaryvalueproblems.com/content/2005/576572
collection DOAJ
language English
format Article
sources DOAJ
author Shivaji R
Chhetri Maya
spellingShingle Shivaji R
Chhetri Maya
Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
Boundary Value Problems
author_facet Shivaji R
Chhetri Maya
author_sort Shivaji R
title Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
title_short Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
title_full Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
title_fullStr Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
title_full_unstemmed Existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-Laplacian semipositone problem
title_sort existence of a positive solution for a <inline-formula><graphic file="1687-2770-2005-576572-i1.gif"/></inline-formula>-laplacian semipositone problem
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2005-01-01
description <p/> <p>We consider the boundary value problem <inline-formula><graphic file="1687-2770-2005-576572-i2.gif"/></inline-formula> in <inline-formula><graphic file="1687-2770-2005-576572-i3.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-2770-2005-576572-i4.gif"/></inline-formula> on <inline-formula><graphic file="1687-2770-2005-576572-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-2770-2005-576572-i6.gif"/></inline-formula> on <inline-formula><graphic file="1687-2770-2005-576572-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-2770-2005-576572-i8.gif"/></inline-formula> is a parameter, <inline-formula><graphic file="1687-2770-2005-576572-i9.gif"/></inline-formula> is a bounded domain in <inline-formula><graphic file="1687-2770-2005-576572-i10.gif"/></inline-formula> with <inline-formula><graphic file="1687-2770-2005-576572-i11.gif"/></inline-formula> boundary <inline-formula><graphic file="1687-2770-2005-576572-i12.gif"/></inline-formula>, and <inline-formula><graphic file="1687-2770-2005-576572-i13.gif"/></inline-formula> for <inline-formula><graphic file="1687-2770-2005-576572-i14.gif"/></inline-formula>. Here, <inline-formula><graphic file="1687-2770-2005-576572-i15.gif"/></inline-formula> is a <inline-formula><graphic file="1687-2770-2005-576572-i16.gif"/></inline-formula> nondecreasing function for some <inline-formula><graphic file="1687-2770-2005-576572-i17.gif"/></inline-formula> satisfying <inline-formula><graphic file="1687-2770-2005-576572-i18.gif"/></inline-formula> (semipositone). We establish a range of <inline-formula><graphic file="1687-2770-2005-576572-i19.gif"/></inline-formula> for which the above problem has a positive solution when <inline-formula><graphic file="1687-2770-2005-576572-i20.gif"/></inline-formula> satisfies certain additional conditions. We employ the method of subsuper solutions to obtain the result.</p>
url http://www.boundaryvalueproblems.com/content/2005/576572
work_keys_str_mv AT shivajir existenceofapositivesolutionforainlineformulagraphicfile168727702005576572i1gifinlineformulalaplaciansemipositoneproblem
AT chhetrimaya existenceofapositivesolutionforainlineformulagraphicfile168727702005576572i1gifinlineformulalaplaciansemipositoneproblem
_version_ 1725784995220422656