Semiconductor quantum plasmons for high frequency thermal emission
Plasmons in heavily doped semiconductor layers are optically active excitations with sharp resonances in the 5–15 μm wavelength region set by the doping level and the effective mass. Here, we demonstrate that volume plasmons can form in doped layers of widths of hundreds of nanometers, without the n...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-09-01
|
Series: | Nanophotonics |
Subjects: | |
Online Access: | https://doi.org/10.1515/nanoph-2020-0413 |
id |
doaj-3855564c3445434ba5c8898d91311714 |
---|---|
record_format |
Article |
spelling |
doaj-3855564c3445434ba5c8898d913117142021-09-06T19:20:37ZengDe GruyterNanophotonics2192-86062192-86142020-09-0110160761510.1515/nanoph-2020-0413Semiconductor quantum plasmons for high frequency thermal emissionVasanelli Angela0Todorov Yanko1Dailly Baptiste2Cosme Sébastien3Gacemi Djamal4Haky Andrew5Sagnes Isabelle6Sirtori Carlo7Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, FranceLaboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, FranceLaboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, Paris, FranceLaboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, Paris, FranceLaboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, FranceLaboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, FranceCentre for Nanosciences and Nanotechnology, CNRS, Universite Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, FranceLaboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, FrancePlasmons in heavily doped semiconductor layers are optically active excitations with sharp resonances in the 5–15 μm wavelength region set by the doping level and the effective mass. Here, we demonstrate that volume plasmons can form in doped layers of widths of hundreds of nanometers, without the need of potential barrier for electronic confinement. Their strong interaction with light makes them perfect absorbers and therefore suitable for incandescent emission. Moreover, by injecting microwave current in the doped layer, we can modulate the temperature of the electron gas. We have fabricated devices for high frequency thermal emission and measured incandescent emission up to 50 MHz, limited by the cutoff of our detector. The frequency-dependent thermal emission is very well reproduced by our theoretical model that let us envision a frequency cutoff in the tens of GHz.https://doi.org/10.1515/nanoph-2020-0413mid-infraredplasmonsthermal emission |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vasanelli Angela Todorov Yanko Dailly Baptiste Cosme Sébastien Gacemi Djamal Haky Andrew Sagnes Isabelle Sirtori Carlo |
spellingShingle |
Vasanelli Angela Todorov Yanko Dailly Baptiste Cosme Sébastien Gacemi Djamal Haky Andrew Sagnes Isabelle Sirtori Carlo Semiconductor quantum plasmons for high frequency thermal emission Nanophotonics mid-infrared plasmons thermal emission |
author_facet |
Vasanelli Angela Todorov Yanko Dailly Baptiste Cosme Sébastien Gacemi Djamal Haky Andrew Sagnes Isabelle Sirtori Carlo |
author_sort |
Vasanelli Angela |
title |
Semiconductor quantum plasmons for high frequency thermal emission |
title_short |
Semiconductor quantum plasmons for high frequency thermal emission |
title_full |
Semiconductor quantum plasmons for high frequency thermal emission |
title_fullStr |
Semiconductor quantum plasmons for high frequency thermal emission |
title_full_unstemmed |
Semiconductor quantum plasmons for high frequency thermal emission |
title_sort |
semiconductor quantum plasmons for high frequency thermal emission |
publisher |
De Gruyter |
series |
Nanophotonics |
issn |
2192-8606 2192-8614 |
publishDate |
2020-09-01 |
description |
Plasmons in heavily doped semiconductor layers are optically active excitations with sharp resonances in the 5–15 μm wavelength region set by the doping level and the effective mass. Here, we demonstrate that volume plasmons can form in doped layers of widths of hundreds of nanometers, without the need of potential barrier for electronic confinement. Their strong interaction with light makes them perfect absorbers and therefore suitable for incandescent emission. Moreover, by injecting microwave current in the doped layer, we can modulate the temperature of the electron gas. We have fabricated devices for high frequency thermal emission and measured incandescent emission up to 50 MHz, limited by the cutoff of our detector. The frequency-dependent thermal emission is very well reproduced by our theoretical model that let us envision a frequency cutoff in the tens of GHz. |
topic |
mid-infrared plasmons thermal emission |
url |
https://doi.org/10.1515/nanoph-2020-0413 |
work_keys_str_mv |
AT vasanelliangela semiconductorquantumplasmonsforhighfrequencythermalemission AT todorovyanko semiconductorquantumplasmonsforhighfrequencythermalemission AT daillybaptiste semiconductorquantumplasmonsforhighfrequencythermalemission AT cosmesebastien semiconductorquantumplasmonsforhighfrequencythermalemission AT gacemidjamal semiconductorquantumplasmonsforhighfrequencythermalemission AT hakyandrew semiconductorquantumplasmonsforhighfrequencythermalemission AT sagnesisabelle semiconductorquantumplasmonsforhighfrequencythermalemission AT sirtoricarlo semiconductorquantumplasmonsforhighfrequencythermalemission |
_version_ |
1717776335292596224 |