Nonlinear monotonization of the Babenko scheme

The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for con...

Full description

Bibliographic Details
Main Authors: M. P. Galanin, T. G. Yelenina
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2003-06-01
Series:Mathematical Modelling and Analysis
Subjects:
Online Access:https://journals.vgtu.lt/index.php/MMA/article/view/9768
id doaj-382d7df328fa4528a9841d9ff8231d29
record_format Article
spelling doaj-382d7df328fa4528a9841d9ff8231d292021-07-02T07:32:07ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-06-018210.3846/13926292.2003.9637216Nonlinear monotonization of the Babenko schemeM. P. Galanin0T. G. Yelenina1Keldysh Institute of Applied Mathematics , RAS , Miusskaya Sq. 4, Moscow A‐47, 125047, RussiaKeldysh Institute of Applied Mathematics , RAS , Miusskaya Sq. 4, Moscow A‐47, 125047, Russia The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for constructing quasi‐monotonic second order approximation schemes for solving hyperbolic systems and equations of gas dynamics: flux correction methods, the Godunov method, TVD methods and others. In particular, many authors developed the idea of TVD method. We try to use this idea to get a new quasi‐monotonic high order accuracy scheme based on the well‐known non‐monotonic Babenko scheme. The algorithm is presented for 1D problem. For testing 2D problem we use the splitting algorithm. The proposed monotonized scheme has shown the best results among all considered in the paper schemes especially for non‐smooth initial profile. Babenko schemos ("kvadrato") netiesinė monotonizacija Santrauka Straipsnio tikslas yra Babenko schemos dvimačiam tiesiniam advekcijos uždaviniui su ženkla keičiančiais greičiais netiesines monotonizacijos metodo pateikimas ir testavimas. Skaitinis monotonizacijos metodas remiasi dirbtines difuzijos ivedimo ideja. Egzistuoja keli kvazimonotoniniu antros aproksimacijos eiles schemu hiperbolinems sistemoms ir duju dinamikos lygtims konstravimo būdai: srautu korekcijos metodas, Godunovo metodas, TVD ir kiti metodai. Mes naudojame TVD ideja naujos kvazimonotonines aukštos tikslumo eiles schemos gavimui remiantis plačiai žinoma monotonine baigtiniu skirtumu Babenko schema. Skaitinis algoritmas pateiktas vienmačio uždavinio atveju. Dvimačio uždavinio sprendimui taikomas faktorizacijos algoritmas. Pasiūlytos monotonizuotos schemos pagalba gauti rezultatai yra geriausi, lyginant su kitu straipsnyje naudojamu schemu skaičiavimu rezultatais. Ypatingai gerai tai matoma neglodaus pradinio profilio atveju. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9768Babenko schemeTVD methodhigh order accuracy schememonotonized scheme
collection DOAJ
language English
format Article
sources DOAJ
author M. P. Galanin
T. G. Yelenina
spellingShingle M. P. Galanin
T. G. Yelenina
Nonlinear monotonization of the Babenko scheme
Mathematical Modelling and Analysis
Babenko scheme
TVD method
high order accuracy scheme
monotonized scheme
author_facet M. P. Galanin
T. G. Yelenina
author_sort M. P. Galanin
title Nonlinear monotonization of the Babenko scheme
title_short Nonlinear monotonization of the Babenko scheme
title_full Nonlinear monotonization of the Babenko scheme
title_fullStr Nonlinear monotonization of the Babenko scheme
title_full_unstemmed Nonlinear monotonization of the Babenko scheme
title_sort nonlinear monotonization of the babenko scheme
publisher Vilnius Gediminas Technical University
series Mathematical Modelling and Analysis
issn 1392-6292
1648-3510
publishDate 2003-06-01
description The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for constructing quasi‐monotonic second order approximation schemes for solving hyperbolic systems and equations of gas dynamics: flux correction methods, the Godunov method, TVD methods and others. In particular, many authors developed the idea of TVD method. We try to use this idea to get a new quasi‐monotonic high order accuracy scheme based on the well‐known non‐monotonic Babenko scheme. The algorithm is presented for 1D problem. For testing 2D problem we use the splitting algorithm. The proposed monotonized scheme has shown the best results among all considered in the paper schemes especially for non‐smooth initial profile. Babenko schemos ("kvadrato") netiesinė monotonizacija Santrauka Straipsnio tikslas yra Babenko schemos dvimačiam tiesiniam advekcijos uždaviniui su ženkla keičiančiais greičiais netiesines monotonizacijos metodo pateikimas ir testavimas. Skaitinis monotonizacijos metodas remiasi dirbtines difuzijos ivedimo ideja. Egzistuoja keli kvazimonotoniniu antros aproksimacijos eiles schemu hiperbolinems sistemoms ir duju dinamikos lygtims konstravimo būdai: srautu korekcijos metodas, Godunovo metodas, TVD ir kiti metodai. Mes naudojame TVD ideja naujos kvazimonotonines aukštos tikslumo eiles schemos gavimui remiantis plačiai žinoma monotonine baigtiniu skirtumu Babenko schema. Skaitinis algoritmas pateiktas vienmačio uždavinio atveju. Dvimačio uždavinio sprendimui taikomas faktorizacijos algoritmas. Pasiūlytos monotonizuotos schemos pagalba gauti rezultatai yra geriausi, lyginant su kitu straipsnyje naudojamu schemu skaičiavimu rezultatais. Ypatingai gerai tai matoma neglodaus pradinio profilio atveju. First Published Online: 14 Oct 2010
topic Babenko scheme
TVD method
high order accuracy scheme
monotonized scheme
url https://journals.vgtu.lt/index.php/MMA/article/view/9768
work_keys_str_mv AT mpgalanin nonlinearmonotonizationofthebabenkoscheme
AT tgyelenina nonlinearmonotonizationofthebabenkoscheme
_version_ 1721335914023616512