Nonlinear monotonization of the Babenko scheme
The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for con...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2003-06-01
|
Series: | Mathematical Modelling and Analysis |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/MMA/article/view/9768 |
id |
doaj-382d7df328fa4528a9841d9ff8231d29 |
---|---|
record_format |
Article |
spelling |
doaj-382d7df328fa4528a9841d9ff8231d292021-07-02T07:32:07ZengVilnius Gediminas Technical UniversityMathematical Modelling and Analysis1392-62921648-35102003-06-018210.3846/13926292.2003.9637216Nonlinear monotonization of the Babenko schemeM. P. Galanin0T. G. Yelenina1Keldysh Institute of Applied Mathematics , RAS , Miusskaya Sq. 4, Moscow A‐47, 125047, RussiaKeldysh Institute of Applied Mathematics , RAS , Miusskaya Sq. 4, Moscow A‐47, 125047, Russia The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for constructing quasi‐monotonic second order approximation schemes for solving hyperbolic systems and equations of gas dynamics: flux correction methods, the Godunov method, TVD methods and others. In particular, many authors developed the idea of TVD method. We try to use this idea to get a new quasi‐monotonic high order accuracy scheme based on the well‐known non‐monotonic Babenko scheme. The algorithm is presented for 1D problem. For testing 2D problem we use the splitting algorithm. The proposed monotonized scheme has shown the best results among all considered in the paper schemes especially for non‐smooth initial profile. Babenko schemos ("kvadrato") netiesinė monotonizacija Santrauka Straipsnio tikslas yra Babenko schemos dvimačiam tiesiniam advekcijos uždaviniui su ženkla keičiančiais greičiais netiesines monotonizacijos metodo pateikimas ir testavimas. Skaitinis monotonizacijos metodas remiasi dirbtines difuzijos ivedimo ideja. Egzistuoja keli kvazimonotoniniu antros aproksimacijos eiles schemu hiperbolinems sistemoms ir duju dinamikos lygtims konstravimo būdai: srautu korekcijos metodas, Godunovo metodas, TVD ir kiti metodai. Mes naudojame TVD ideja naujos kvazimonotonines aukštos tikslumo eiles schemos gavimui remiantis plačiai žinoma monotonine baigtiniu skirtumu Babenko schema. Skaitinis algoritmas pateiktas vienmačio uždavinio atveju. Dvimačio uždavinio sprendimui taikomas faktorizacijos algoritmas. Pasiūlytos monotonizuotos schemos pagalba gauti rezultatai yra geriausi, lyginant su kitu straipsnyje naudojamu schemu skaičiavimu rezultatais. Ypatingai gerai tai matoma neglodaus pradinio profilio atveju. First Published Online: 14 Oct 2010 https://journals.vgtu.lt/index.php/MMA/article/view/9768Babenko schemeTVD methodhigh order accuracy schememonotonized scheme |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. P. Galanin T. G. Yelenina |
spellingShingle |
M. P. Galanin T. G. Yelenina Nonlinear monotonization of the Babenko scheme Mathematical Modelling and Analysis Babenko scheme TVD method high order accuracy scheme monotonized scheme |
author_facet |
M. P. Galanin T. G. Yelenina |
author_sort |
M. P. Galanin |
title |
Nonlinear monotonization of the Babenko scheme |
title_short |
Nonlinear monotonization of the Babenko scheme |
title_full |
Nonlinear monotonization of the Babenko scheme |
title_fullStr |
Nonlinear monotonization of the Babenko scheme |
title_full_unstemmed |
Nonlinear monotonization of the Babenko scheme |
title_sort |
nonlinear monotonization of the babenko scheme |
publisher |
Vilnius Gediminas Technical University |
series |
Mathematical Modelling and Analysis |
issn |
1392-6292 1648-3510 |
publishDate |
2003-06-01 |
description |
The goal of the paper is to present and test the nonlinear monotonization of the Babenko scheme for solving 2D linear advection equation with alternating‐sign velocities. The numerical method of monotonization is based on the idea of limited artificial diffusion. There are some approaches for constructing quasi‐monotonic second order approximation schemes for solving hyperbolic systems and equations of gas dynamics: flux correction methods, the Godunov method, TVD methods and others. In particular, many authors developed the idea of TVD method. We try to use this idea to get a new quasi‐monotonic high order accuracy scheme based on the well‐known non‐monotonic Babenko scheme. The algorithm is presented for 1D problem. For testing 2D problem we use the splitting algorithm. The proposed monotonized scheme has shown the best results among all considered in the paper schemes especially for non‐smooth initial profile.
Babenko schemos ("kvadrato") netiesinė monotonizacija
Santrauka
Straipsnio tikslas yra Babenko schemos dvimačiam tiesiniam advekcijos uždaviniui su ženkla keičiančiais greičiais netiesines monotonizacijos metodo pateikimas ir testavimas. Skaitinis monotonizacijos metodas remiasi dirbtines difuzijos ivedimo ideja. Egzistuoja keli kvazimonotoniniu antros aproksimacijos eiles schemu hiperbolinems sistemoms ir duju dinamikos lygtims konstravimo būdai: srautu korekcijos metodas, Godunovo metodas, TVD ir kiti metodai. Mes naudojame TVD ideja naujos kvazimonotonines aukštos tikslumo eiles schemos gavimui remiantis plačiai žinoma monotonine baigtiniu skirtumu Babenko schema. Skaitinis algoritmas pateiktas vienmačio uždavinio atveju. Dvimačio uždavinio sprendimui taikomas faktorizacijos algoritmas. Pasiūlytos monotonizuotos schemos pagalba gauti rezultatai yra geriausi, lyginant su kitu straipsnyje naudojamu schemu skaičiavimu rezultatais. Ypatingai gerai tai matoma neglodaus pradinio profilio atveju.
First Published Online: 14 Oct 2010
|
topic |
Babenko scheme TVD method high order accuracy scheme monotonized scheme |
url |
https://journals.vgtu.lt/index.php/MMA/article/view/9768 |
work_keys_str_mv |
AT mpgalanin nonlinearmonotonizationofthebabenkoscheme AT tgyelenina nonlinearmonotonizationofthebabenkoscheme |
_version_ |
1721335914023616512 |