On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations
It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2016-01-01
|
Series: | Results in Physics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S221137971500073X |
Summary: | It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity |
---|---|
ISSN: | 2211-3797 |