Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations
Three nearly degenerate pairs of doublet bands are identified in 131Ba. Two of them, with positive-parity, are interpreted as pseudospin-chiral quartet bands. This is the first time that a complete set of chiral doublet bands built on the pseudospin partners π(d5/2,g7/2) is observed. The chiral band...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-08-01
|
Series: | Physics Letters B |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0370269320303762 |
id |
doaj-380990565489407d9f84fd5ef48e865f |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Guo C.M. Petrache D. Mengoni Y.H. Qiang Y.P. Wang Y.Y. Wang J. Meng Y.K. Wang S.Q. Zhang P.W. Zhao A. Astier J.G. Wang H.L. Fan E. Dupont B.F. Lv D. Bazzacco A. Boso A. Goasduff F. Recchia D. Testov F. Galtarossa G. Jaworski D.R. Napoli S. Riccetto M. Siciliano J.J. Valiente-Dobon M.L. Liu G.S. Li X.H. Zhou Y.H. Zhang C. Andreoiu F.H. Garcia K. Ortner K. Whitmore A. Ataç-Nyberg T. Bäck B. Cederwall E.A. Lawrie I. Kuti D. Sohler T. Marchlewski J. Srebrny A. Tucholski |
spellingShingle |
S. Guo C.M. Petrache D. Mengoni Y.H. Qiang Y.P. Wang Y.Y. Wang J. Meng Y.K. Wang S.Q. Zhang P.W. Zhao A. Astier J.G. Wang H.L. Fan E. Dupont B.F. Lv D. Bazzacco A. Boso A. Goasduff F. Recchia D. Testov F. Galtarossa G. Jaworski D.R. Napoli S. Riccetto M. Siciliano J.J. Valiente-Dobon M.L. Liu G.S. Li X.H. Zhou Y.H. Zhang C. Andreoiu F.H. Garcia K. Ortner K. Whitmore A. Ataç-Nyberg T. Bäck B. Cederwall E.A. Lawrie I. Kuti D. Sohler T. Marchlewski J. Srebrny A. Tucholski Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations Physics Letters B Nuclear structure Pseudospin Chirality Octupole correlation Reflection-asymmetric particle rotor model Tilted axis cranking covariant density functional theory |
author_facet |
S. Guo C.M. Petrache D. Mengoni Y.H. Qiang Y.P. Wang Y.Y. Wang J. Meng Y.K. Wang S.Q. Zhang P.W. Zhao A. Astier J.G. Wang H.L. Fan E. Dupont B.F. Lv D. Bazzacco A. Boso A. Goasduff F. Recchia D. Testov F. Galtarossa G. Jaworski D.R. Napoli S. Riccetto M. Siciliano J.J. Valiente-Dobon M.L. Liu G.S. Li X.H. Zhou Y.H. Zhang C. Andreoiu F.H. Garcia K. Ortner K. Whitmore A. Ataç-Nyberg T. Bäck B. Cederwall E.A. Lawrie I. Kuti D. Sohler T. Marchlewski J. Srebrny A. Tucholski |
author_sort |
S. Guo |
title |
Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
title_short |
Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
title_full |
Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
title_fullStr |
Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
title_full_unstemmed |
Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
title_sort |
evidence for pseudospin-chiral quartet bands in the presence of octupole correlations |
publisher |
Elsevier |
series |
Physics Letters B |
issn |
0370-2693 |
publishDate |
2020-08-01 |
description |
Three nearly degenerate pairs of doublet bands are identified in 131Ba. Two of them, with positive-parity, are interpreted as pseudospin-chiral quartet bands. This is the first time that a complete set of chiral doublet bands built on the pseudospin partners π(d5/2,g7/2) is observed. The chiral bands with opposite parity built on 3-quasiparticle configurations are directly connected by many E1 transitions, without involving an intermediary non-chiral configuration. The observed band structures in 131Ba have been investigated by using the reflection-asymmetric particle rotor model. The energies and the electromagnetic transition ratios of the three pairs of doublet bands observed in 131Ba are reproduced and they are interpreted as chiral doublet bands with three-quasiparticle configurations. It is the first time that multiple chiral bands are observed in the presence of enhanced octupole correlations and pseudospin symmetry. |
topic |
Nuclear structure Pseudospin Chirality Octupole correlation Reflection-asymmetric particle rotor model Tilted axis cranking covariant density functional theory |
url |
http://www.sciencedirect.com/science/article/pii/S0370269320303762 |
work_keys_str_mv |
AT sguo evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT cmpetrache evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT dmengoni evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT yhqiang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT ypwang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT yywang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT jmeng evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT ykwang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT sqzhang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT pwzhao evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT aastier evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT jgwang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT hlfan evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT edupont evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT bflv evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT dbazzacco evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT aboso evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT agoasduff evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT frecchia evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT dtestov evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT fgaltarossa evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT gjaworski evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT drnapoli evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT sriccetto evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT msiciliano evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT jjvalientedobon evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT mlliu evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT gsli evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT xhzhou evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT yhzhang evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT candreoiu evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT fhgarcia evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT kortner evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT kwhitmore evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT aatacnyberg evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT tback evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT bcederwall evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT ealawrie evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT ikuti evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT dsohler evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT tmarchlewski evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT jsrebrny evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations AT atucholski evidenceforpseudospinchiralquartetbandsinthepresenceofoctupolecorrelations |
_version_ |
1724540341598552064 |
spelling |
doaj-380990565489407d9f84fd5ef48e865f2020-11-25T03:39:12ZengElsevierPhysics Letters B0370-26932020-08-01807135572Evidence for pseudospin-chiral quartet bands in the presence of octupole correlationsS. Guo0C.M. Petrache1D. Mengoni2Y.H. Qiang3Y.P. Wang4Y.Y. Wang5J. Meng6Y.K. Wang7S.Q. Zhang8P.W. Zhao9A. Astier10J.G. Wang11H.L. Fan12E. Dupont13B.F. Lv14D. Bazzacco15A. Boso16A. Goasduff17F. Recchia18D. Testov19F. Galtarossa20G. Jaworski21D.R. Napoli22S. Riccetto23M. Siciliano24J.J. Valiente-Dobon25M.L. Liu26G.S. Li27X.H. Zhou28Y.H. Zhang29C. Andreoiu30F.H. Garcia31K. Ortner32K. Whitmore33A. Ataç-Nyberg34T. Bäck35B. Cederwall36E.A. Lawrie37I. Kuti38D. Sohler39T. Marchlewski40J. Srebrny41A. Tucholski42Key Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of China; Corresponding authors.Centre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3, Université Paris-Saclay, Bât. 104-108, 91405 Orsay, France; Corresponding authors.Dipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of ChinaState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of ChinaState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of ChinaState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of China; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, JapanState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of ChinaState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of ChinaState Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, People's Republic of ChinaCentre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3, Université Paris-Saclay, Bât. 104-108, 91405 Orsay, FranceKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of ChinaKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of ChinaCentre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3, Université Paris-Saclay, Bât. 104-108, 91405 Orsay, FranceCentre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3, Université Paris-Saclay, Bât. 104-108, 91405 Orsay, FranceDipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyDipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyDipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyDipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyDipartimento di Fisica e Astronomia, Université degli Studi di Padova, I-35131 Padova, Italy; INFN, Sezione di Padova, I-35131 Padova, ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), Italy; Dipartimento di Fisica e Scienze della Terra, Université di Ferrara, Ferrara, ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), ItalyINFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), ItalyKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of ChinaKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of ChinaKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of ChinaKey Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China; School of Nuclear Science and Technology, University of Chinese Academy of Science, Beijing 100049, People's Republic of ChinaDepartment of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, CanadaDepartment of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, CanadaDepartment of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, CanadaDepartment of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, CanadaKTH Department of Physics, S-10691 Stockholm, SwedenKTH Department of Physics, S-10691 Stockholm, SwedenKTH Department of Physics, S-10691 Stockholm, SwedeniThemba LABS, National Research Foundation, PO Box 722, 7131 Somerset West, South Africa; Department of Physics & Astronomy, University of the Western Cape, P/B X17, Bellville ZA-7535, South AfricaInstitute of Nuclear Research, Hungarian Academy of Sciences, 4001 Debrecen, HungaryInstitute of Nuclear Research, Hungarian Academy of Sciences, 4001 Debrecen, HungaryUniversity of Warsaw, Heavy Ion Laboratory, Pasteura 5a, 02-093 Warsaw, PolandUniversity of Warsaw, Heavy Ion Laboratory, Pasteura 5a, 02-093 Warsaw, PolandUniversity of Warsaw, Heavy Ion Laboratory, Pasteura 5a, 02-093 Warsaw, PolandThree nearly degenerate pairs of doublet bands are identified in 131Ba. Two of them, with positive-parity, are interpreted as pseudospin-chiral quartet bands. This is the first time that a complete set of chiral doublet bands built on the pseudospin partners π(d5/2,g7/2) is observed. The chiral bands with opposite parity built on 3-quasiparticle configurations are directly connected by many E1 transitions, without involving an intermediary non-chiral configuration. The observed band structures in 131Ba have been investigated by using the reflection-asymmetric particle rotor model. The energies and the electromagnetic transition ratios of the three pairs of doublet bands observed in 131Ba are reproduced and they are interpreted as chiral doublet bands with three-quasiparticle configurations. It is the first time that multiple chiral bands are observed in the presence of enhanced octupole correlations and pseudospin symmetry.http://www.sciencedirect.com/science/article/pii/S0370269320303762Nuclear structurePseudospinChiralityOctupole correlationReflection-asymmetric particle rotor modelTilted axis cranking covariant density functional theory |