A frame work for heat generation/absorption and modified homogeneous–heterogeneous reaction in flow based on non-Darcy–Forchheimer medium

The present work aims to report the consequences of Darcy–Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy–Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorpti...

Full description

Bibliographic Details
Main Authors: Tasawar Hayat, Salman Ahmad, Muhammad I. Khan, Ahmed Alsaedi
Format: Article
Language:English
Published: Elsevier 2018-04-01
Series:Nuclear Engineering and Technology
Online Access:http://www.sciencedirect.com/science/article/pii/S1738573317303261
Description
Summary:The present work aims to report the consequences of Darcy–Forchheimer medium in flow of Cross fluid model toward a stretched surface. Flow in porous space is categorized by Darcy–Forchheimer medium. Further heat transfer characteristics are examined via thermal radiation and heat generation/absorption. Transformation procedure is used. The arising system of nonlinear ordinary differential equations is solved numerically by means of shooting method. The effects of different flow variables on velocity, temperature, concentration, skin friction, and heat transfer rate are discussed. The obtained outcomes show that velocity was enhanced with the increase in the Weissenberg number but decays with increase in the porosity parameter and Hartman number. Temperature field is boosted by thermal radiation and heat generation; however, it decays with the increase in the Prandtl number. Keywords: Cross Fluid, Heat Generation/Absorption, Homogeneous–Heterogeneous Reactions, Non-Darcy–Forchheimer Medium, Thermal Radiation
ISSN:1738-5733