New-generation osteoplastic materials based on biological and synthetic matrices

Objectives. The purpose of this analytical review is to evaluate the market for osteoplastic materials and surgical implants, as well as study the features of new-generation materials and the results of clinical applications.Methods. This review summarizes the volumes of research articles presented...

Full description

Bibliographic Details
Main Authors: D. D. Lykoshin, V. V. Zaitsev, M. A. Kostromina, R. S. Esipov
Format: Article
Language:Russian
Published: MIREA - Russian Technological University 2021-03-01
Series:Тонкие химические технологии
Subjects:
Online Access:https://www.finechem-mirea.ru/jour/article/view/1684
Description
Summary:Objectives. The purpose of this analytical review is to evaluate the market for osteoplastic materials and surgical implants, as well as study the features of new-generation materials and the results of clinical applications.Methods. This review summarizes the volumes of research articles presented in the electronic database PubMed and eLIBRARY. A total of 129 scientific articles related to biological systems, calcium phosphate, polymer, and biocomposite matrices as carriers of pharmaceutical substances, primary recombinant protein osteoinductors, antibiotics, and biologically active chemical reagents were analyzed and summarized. The search depth was 10 years.Results. Demineralized bone matrix constitutes 26% of all types of osteoplastic matrices used globally in surgical osteology, which includes neurosurgery, traumatology and orthopedics, dentistry, and maxillofacial and pediatric surgery. Among the matrices, polymer and biocomposite matrices are outstanding. Special attention is paid to the possibility of immobilizing osteogenic factors and target pharmaceutical substances on the scaffold material to achieve controlled and prolonged release at the site of surgical implantation. Polymeric and biocomposite materials can retard the release of pharmaceutical substances at the implantation site, promoting a decrease in the toxicity and an improvement in the therapeutic effect. The use of composite scaffolds of different compositions in vivo results in high osteogenesis, promotes the initialization of biomineralization, and enables the tuning of the degradation rate of the material.Conclusions. Osteoplastic materials of various compositions in combination with drugs showed accelerated regeneration and mineralization of bone tissue in vivo, excluding systemic side reactions. Furthermore, although some materials have already been registered as commercial drugs, a plethora of unresolved problems remain. Due to the limited clinical studies of materials for use on humans, there is still an insufficient understanding of the toxicity of materials, time of their resorption, speed of drug delivery, and the possible long-term adverse effects of using implants of different compositions.
ISSN:2410-6593
2686-7575