Surface drainage in leveled land: Implication of slope

ABSTRACT In the lowlands of Rio Grande do Sul, land leveling is mostly carried out with no slope for the purpose of rice production. In this environment, soils with a low hydraulic conductivity are predominant owing to the presence of a practically impermeable B-horizon near the surface. Land leveli...

Full description

Bibliographic Details
Main Authors: Antoniony S. Winkler, Jaqueline T. da Silva, José M. B. Parfitt, Claudia F. A. Teixeira-Gandra, Germani Conceço, Luis C. Timm
Format: Article
Language:English
Published: Universidade Federal de Campina Grande
Series:Revista Brasileira de Engenharia Agrícola e Ambiental - Agriambi
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-43662018000200077&lng=en&tlng=en
Description
Summary:ABSTRACT In the lowlands of Rio Grande do Sul, land leveling is mostly carried out with no slope for the purpose of rice production. In this environment, soils with a low hydraulic conductivity are predominant owing to the presence of a practically impermeable B-horizon near the surface. Land leveling leads to soil accommodation resulting in the formation of depressions where water accumulates after heavy rainfalls, subsequently leading to problems with crops implanted in succession to rice, such as soybeans. The objective of this research was to quantify the areas and volumes of water accumulation in soil as a function of the slope of land leveling. Five typical leveled lowland areas were studied as a part of this research. The original areas presented slopes of 0, 0.20, 0.25, 0.28 and 0.40%, which were used to generate new digital elevation models with slopes between 0 and 0.5%. These newly generated digital models were used to map the depressions with surface water storage. In conclusion, land leveling with slopes higher than 0.1% is recommended to minimize problems with superficial water storage in rice fields.
ISSN:1807-1929