Aqueous reactions of organic triplet excited states with atmospheric alkenes

<p>Triplet excited states of organic matter are formed when colored organic matter (i.e., brown carbon) absorbs light. While these “triplets” can be important photooxidants in atmospheric drops and particles (e.g., they rapidly oxidize phenols), very little is known about their reactivity towa...

Full description

Bibliographic Details
Main Authors: R. Kaur, B. M. Hudson, J. Draper, D. J. Tantillo, C. Anastasio
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/5021/2019/acp-19-5021-2019.pdf
id doaj-37fab17abd4a42e79bbf8abe18504526
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author R. Kaur
R. Kaur
B. M. Hudson
J. Draper
J. Draper
D. J. Tantillo
C. Anastasio
C. Anastasio
spellingShingle R. Kaur
R. Kaur
B. M. Hudson
J. Draper
J. Draper
D. J. Tantillo
C. Anastasio
C. Anastasio
Aqueous reactions of organic triplet excited states with atmospheric alkenes
Atmospheric Chemistry and Physics
author_facet R. Kaur
R. Kaur
B. M. Hudson
J. Draper
J. Draper
D. J. Tantillo
C. Anastasio
C. Anastasio
author_sort R. Kaur
title Aqueous reactions of organic triplet excited states with atmospheric alkenes
title_short Aqueous reactions of organic triplet excited states with atmospheric alkenes
title_full Aqueous reactions of organic triplet excited states with atmospheric alkenes
title_fullStr Aqueous reactions of organic triplet excited states with atmospheric alkenes
title_full_unstemmed Aqueous reactions of organic triplet excited states with atmospheric alkenes
title_sort aqueous reactions of organic triplet excited states with atmospheric alkenes
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-04-01
description <p>Triplet excited states of organic matter are formed when colored organic matter (i.e., brown carbon) absorbs light. While these “triplets” can be important photooxidants in atmospheric drops and particles (e.g., they rapidly oxidize phenols), very little is known about their reactivity toward many classes of organic compounds in the atmosphere. Here we measure the bimolecular rate constants of the triplet excited state of benzophenone (<span class="inline-formula"><sup>3</sup>BP<sup>∗</sup></span>), a model species, with 17 water-soluble <span class="inline-formula">C<sub>3</sub></span>–<span class="inline-formula">C<sub>6</sub></span> alkenes that have either been found in the atmosphere or are reasonable surrogates for identified species. Measured rate constants (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">ALK</mi><mo>+</mo><mn mathvariant="normal">3</mn><msup><mi mathvariant="normal">BP</mi><mo>∗</mo></msup></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="5e244a6573dc648a8ae694306cb94c30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-5021-2019-ie00001.svg" width="47pt" height="12pt" src="acp-19-5021-2019-ie00001.png"/></svg:svg></span></span>) vary by a factor of 30 and are in the range of (0.24–7.5)&thinsp;<span class="inline-formula">×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. Biogenic alkenes found in the atmosphere – e.g., <i>cis</i>-3-hexen-1-ol, <i>cis</i>-3-hexenyl acetate, and methyl jasmonate – react rapidly, with rate constants above <span class="inline-formula">1×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. Rate constants depend on alkene characteristics such as the location of the double bond, stereochemistry, and alkyl substitution on the double bond. There is a reasonable correlation between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">ALK</mi><mo>+</mo><mn mathvariant="normal">3</mn><msup><mi mathvariant="normal">BP</mi><mo>∗</mo></msup></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="2a58d5ba79f5a7bbe5533d56d95f8683"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-5021-2019-ie00002.svg" width="47pt" height="12pt" src="acp-19-5021-2019-ie00002.png"/></svg:svg></span></span> and the calculated one-electron oxidation potential (OP) of the alkenes (<span class="inline-formula"><i>R</i><sup>2</sup>=0.58</span>); in contrast, rate constants are not correlated with bond dissociation enthalpies, bond dissociation free energies, or computed energy barriers for hydrogen abstraction. Using the OP relationship, we estimate aqueous rate constants for a number of unsaturated isoprene and limonene oxidation products with <span class="inline-formula"><sup>3</sup>BP<sup>∗</sup></span>: values are in the range of (0.080–1.7)&thinsp;<span class="inline-formula">×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>, with generally faster values for limonene products. Rate constants with less reactive triplets, which are probably more environmentally relevant, are likely roughly 25 times slower. Using our predicted rate constants, along with values for other reactions from the literature, we conclude that triplets are probably minor oxidants for isoprene- and limonene-related compounds in cloudy or foggy atmospheres, except in cases in which the triplets are very reactive.</p>
url https://www.atmos-chem-phys.net/19/5021/2019/acp-19-5021-2019.pdf
work_keys_str_mv AT rkaur aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT rkaur aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT bmhudson aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT jdraper aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT jdraper aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT djtantillo aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT canastasio aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
AT canastasio aqueousreactionsoforganictripletexcitedstateswithatmosphericalkenes
_version_ 1725337733685051392
spelling doaj-37fab17abd4a42e79bbf8abe185045262020-11-25T00:27:55ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-04-01195021503210.5194/acp-19-5021-2019Aqueous reactions of organic triplet excited states with atmospheric alkenesR. Kaur0R. Kaur1B. M. Hudson2J. Draper3J. Draper4D. J. Tantillo5C. Anastasio6C. Anastasio7Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USAAgricultural & Environmental Chemistry Graduate Group, University of California, Davis, California 95616, USADepartment of Chemistry, University of California, Davis, California 95616, USADepartment of Land, Air, and Water Resources, University of California, Davis, California 95616, USAnow at: Fresno Metropolitan Flood Control District, Fresno, California 93727, USADepartment of Chemistry, University of California, Davis, California 95616, USADepartment of Land, Air, and Water Resources, University of California, Davis, California 95616, USAAgricultural & Environmental Chemistry Graduate Group, University of California, Davis, California 95616, USA<p>Triplet excited states of organic matter are formed when colored organic matter (i.e., brown carbon) absorbs light. While these “triplets” can be important photooxidants in atmospheric drops and particles (e.g., they rapidly oxidize phenols), very little is known about their reactivity toward many classes of organic compounds in the atmosphere. Here we measure the bimolecular rate constants of the triplet excited state of benzophenone (<span class="inline-formula"><sup>3</sup>BP<sup>∗</sup></span>), a model species, with 17 water-soluble <span class="inline-formula">C<sub>3</sub></span>–<span class="inline-formula">C<sub>6</sub></span> alkenes that have either been found in the atmosphere or are reasonable surrogates for identified species. Measured rate constants (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">ALK</mi><mo>+</mo><mn mathvariant="normal">3</mn><msup><mi mathvariant="normal">BP</mi><mo>∗</mo></msup></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="5e244a6573dc648a8ae694306cb94c30"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-5021-2019-ie00001.svg" width="47pt" height="12pt" src="acp-19-5021-2019-ie00001.png"/></svg:svg></span></span>) vary by a factor of 30 and are in the range of (0.24–7.5)&thinsp;<span class="inline-formula">×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. Biogenic alkenes found in the atmosphere – e.g., <i>cis</i>-3-hexen-1-ol, <i>cis</i>-3-hexenyl acetate, and methyl jasmonate – react rapidly, with rate constants above <span class="inline-formula">1×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. Rate constants depend on alkene characteristics such as the location of the double bond, stereochemistry, and alkyl substitution on the double bond. There is a reasonable correlation between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi>k</mi><mrow><mi mathvariant="normal">ALK</mi><mo>+</mo><mn mathvariant="normal">3</mn><msup><mi mathvariant="normal">BP</mi><mo>∗</mo></msup></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="47pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="2a58d5ba79f5a7bbe5533d56d95f8683"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-5021-2019-ie00002.svg" width="47pt" height="12pt" src="acp-19-5021-2019-ie00002.png"/></svg:svg></span></span> and the calculated one-electron oxidation potential (OP) of the alkenes (<span class="inline-formula"><i>R</i><sup>2</sup>=0.58</span>); in contrast, rate constants are not correlated with bond dissociation enthalpies, bond dissociation free energies, or computed energy barriers for hydrogen abstraction. Using the OP relationship, we estimate aqueous rate constants for a number of unsaturated isoprene and limonene oxidation products with <span class="inline-formula"><sup>3</sup>BP<sup>∗</sup></span>: values are in the range of (0.080–1.7)&thinsp;<span class="inline-formula">×10<sup>9</sup></span>&thinsp;M<span class="inline-formula"><sup>−1</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>, with generally faster values for limonene products. Rate constants with less reactive triplets, which are probably more environmentally relevant, are likely roughly 25 times slower. Using our predicted rate constants, along with values for other reactions from the literature, we conclude that triplets are probably minor oxidants for isoprene- and limonene-related compounds in cloudy or foggy atmospheres, except in cases in which the triplets are very reactive.</p>https://www.atmos-chem-phys.net/19/5021/2019/acp-19-5021-2019.pdf