Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/18/12/4306 |
id |
doaj-37f576a1e50d4cff94827ee307f95b68 |
---|---|
record_format |
Article |
spelling |
doaj-37f576a1e50d4cff94827ee307f95b682020-11-25T00:55:43ZengMDPI AGSensors1424-82202018-12-011812430610.3390/s18124306s18124306Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in TreesYing Li0Brian K. Via1Qingzheng Cheng2Yaoxiang Li3College of Engineering and Technology, Northeast Forestry University, Harbin 150040, ChinaForest Products Development Center, SFWS, Auburn University, Auburn, AL 36849, USAForest Products Development Center, SFWS, Auburn University, Auburn, AL 36849, USACollege of Engineering and Technology, Northeast Forestry University, Harbin 150040, ChinaThe data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length in Dahurian larch wood. Methods based on lifting wavelet transform (LWT) and local correlation maximization (LCM) algorithms were developed for optimal de-noising parameters and partial least squares (PLS) was employed as the prediction method. The results showed that: (1) The values of tracheid length in the study were generally high and had a great positive linear correlation with annual rings (R = 0.881), (2) the optimal de-noising parameters for larch wood based Vis-NIR spectra were Daubechies-2 (db2) mother wavelet with 4 decomposition levels while using a global fixed hard threshold based on LWT, and (3) the Vis-NIR model based on the optimal LWT de-noising parameters (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.834, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.262, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.454) outperformed those based on the LWT coupled with LCM algorithm (LWT-LCM) (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.816, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.276, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.331) and raw spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.822, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.271, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.370). Thus, the selection of appropriate LWT de-noising parameters could aid in extracting a useful signal for better prediction accuracy of tracheid length.https://www.mdpi.com/1424-8220/18/12/4306lifting wavelet transformVis-NIR spectroscopylarchtracheid length |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ying Li Brian K. Via Qingzheng Cheng Yaoxiang Li |
spellingShingle |
Ying Li Brian K. Via Qingzheng Cheng Yaoxiang Li Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees Sensors lifting wavelet transform Vis-NIR spectroscopy larch tracheid length |
author_facet |
Ying Li Brian K. Via Qingzheng Cheng Yaoxiang Li |
author_sort |
Ying Li |
title |
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees |
title_short |
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees |
title_full |
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees |
title_fullStr |
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees |
title_full_unstemmed |
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees |
title_sort |
lifting wavelet transform de-noising for model optimization of vis-nir spectroscopy to predict wood tracheid length in trees |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2018-12-01 |
description |
The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length in Dahurian larch wood. Methods based on lifting wavelet transform (LWT) and local correlation maximization (LCM) algorithms were developed for optimal de-noising parameters and partial least squares (PLS) was employed as the prediction method. The results showed that: (1) The values of tracheid length in the study were generally high and had a great positive linear correlation with annual rings (R = 0.881), (2) the optimal de-noising parameters for larch wood based Vis-NIR spectra were Daubechies-2 (db2) mother wavelet with 4 decomposition levels while using a global fixed hard threshold based on LWT, and (3) the Vis-NIR model based on the optimal LWT de-noising parameters (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.834, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.262, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.454) outperformed those based on the LWT coupled with LCM algorithm (LWT-LCM) (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.816, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.276, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.331) and raw spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.822, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.271, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.370). Thus, the selection of appropriate LWT de-noising parameters could aid in extracting a useful signal for better prediction accuracy of tracheid length. |
topic |
lifting wavelet transform Vis-NIR spectroscopy larch tracheid length |
url |
https://www.mdpi.com/1424-8220/18/12/4306 |
work_keys_str_mv |
AT yingli liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees AT briankvia liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees AT qingzhengcheng liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees AT yaoxiangli liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees |
_version_ |
1725229688026038272 |