Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees

The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length...

Full description

Bibliographic Details
Main Authors: Ying Li, Brian K. Via, Qingzheng Cheng, Yaoxiang Li
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/12/4306
id doaj-37f576a1e50d4cff94827ee307f95b68
record_format Article
spelling doaj-37f576a1e50d4cff94827ee307f95b682020-11-25T00:55:43ZengMDPI AGSensors1424-82202018-12-011812430610.3390/s18124306s18124306Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in TreesYing Li0Brian K. Via1Qingzheng Cheng2Yaoxiang Li3College of Engineering and Technology, Northeast Forestry University, Harbin 150040, ChinaForest Products Development Center, SFWS, Auburn University, Auburn, AL 36849, USAForest Products Development Center, SFWS, Auburn University, Auburn, AL 36849, USACollege of Engineering and Technology, Northeast Forestry University, Harbin 150040, ChinaThe data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length in Dahurian larch wood. Methods based on lifting wavelet transform (LWT) and local correlation maximization (LCM) algorithms were developed for optimal de-noising parameters and partial least squares (PLS) was employed as the prediction method. The results showed that: (1) The values of tracheid length in the study were generally high and had a great positive linear correlation with annual rings (R = 0.881), (2) the optimal de-noising parameters for larch wood based Vis-NIR spectra were Daubechies-2 (db2) mother wavelet with 4 decomposition levels while using a global fixed hard threshold based on LWT, and (3) the Vis-NIR model based on the optimal LWT de-noising parameters (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.834, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.262, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.454) outperformed those based on the LWT coupled with LCM algorithm (LWT-LCM) (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.816, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.276, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.331) and raw spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.822, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.271, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.370). Thus, the selection of appropriate LWT de-noising parameters could aid in extracting a useful signal for better prediction accuracy of tracheid length.https://www.mdpi.com/1424-8220/18/12/4306lifting wavelet transformVis-NIR spectroscopylarchtracheid length
collection DOAJ
language English
format Article
sources DOAJ
author Ying Li
Brian K. Via
Qingzheng Cheng
Yaoxiang Li
spellingShingle Ying Li
Brian K. Via
Qingzheng Cheng
Yaoxiang Li
Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
Sensors
lifting wavelet transform
Vis-NIR spectroscopy
larch
tracheid length
author_facet Ying Li
Brian K. Via
Qingzheng Cheng
Yaoxiang Li
author_sort Ying Li
title Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
title_short Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
title_full Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
title_fullStr Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
title_full_unstemmed Lifting Wavelet Transform De-noising for Model Optimization of Vis-NIR Spectroscopy to Predict Wood Tracheid Length in Trees
title_sort lifting wavelet transform de-noising for model optimization of vis-nir spectroscopy to predict wood tracheid length in trees
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2018-12-01
description The data analysis of visible-near infrared (Vis-NIR) spectroscopy is critical for precise information extraction and prediction of fiber morphology. The objectives of this study were to discuss the de-noising of Vis-NIR spectra, taken from wood, to improve the prediction accuracy of tracheid length in Dahurian larch wood. Methods based on lifting wavelet transform (LWT) and local correlation maximization (LCM) algorithms were developed for optimal de-noising parameters and partial least squares (PLS) was employed as the prediction method. The results showed that: (1) The values of tracheid length in the study were generally high and had a great positive linear correlation with annual rings (R = 0.881), (2) the optimal de-noising parameters for larch wood based Vis-NIR spectra were Daubechies-2 (db2) mother wavelet with 4 decomposition levels while using a global fixed hard threshold based on LWT, and (3) the Vis-NIR model based on the optimal LWT de-noising parameters (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.834, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.262, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.454) outperformed those based on the LWT coupled with LCM algorithm (LWT-LCM) (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.816, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.276, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.331) and raw spectra (<inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi mathvariant="normal">R</mi> <mi mathvariant="normal">c</mi> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> = 0.822, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>RMSEC</mi> </mrow> </semantics> </math> </inline-formula> = 0.271, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mrow> <mi>RPD</mi> </mrow> <mi mathvariant="normal">c</mi> </msub> </mrow> </semantics> </math> </inline-formula> = 2.370). Thus, the selection of appropriate LWT de-noising parameters could aid in extracting a useful signal for better prediction accuracy of tracheid length.
topic lifting wavelet transform
Vis-NIR spectroscopy
larch
tracheid length
url https://www.mdpi.com/1424-8220/18/12/4306
work_keys_str_mv AT yingli liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees
AT briankvia liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees
AT qingzhengcheng liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees
AT yaoxiangli liftingwavelettransformdenoisingformodeloptimizationofvisnirspectroscopytopredictwoodtracheidlengthintrees
_version_ 1725229688026038272