The Soliton Solutions and Long-Time Asymptotic Analysis for a General Coupled KdV Equation
A general coupled KdV equation, which describes the interactions of two long waves with different dispersion relation, is considered. By employing the Hirota’s bilinear method, the bilinear form is obtained, and the one-soliton solution and two-soliton solution are constructed. Moreover, the elastic...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Advances in Mathematical Physics |
Online Access: | http://dx.doi.org/10.1155/2021/5569909 |
Summary: | A general coupled KdV equation, which describes the interactions of two long waves with different dispersion relation, is considered. By employing the Hirota’s bilinear method, the bilinear form is obtained, and the one-soliton solution and two-soliton solution are constructed. Moreover, the elasticity of the collision between two solitons is proved by analyzing the asymptotic behavior of the two-soliton solution. Some figures are displayed to illustrate the process of elastic collision. |
---|---|
ISSN: | 1687-9139 |