Previsión de demanda intermitente con métodos de series de tiempo y redes neuronales artificiales: Estudio de caso

Este artículo tiene como objetivo estudiar la previsión de la demanda intermitente de un tipo específico de pieza de reposición en una industria brasilera de sistemas de refrigeración que comercializa sus productos en el mercado latinoamericano. La demanda es caracterizada en términos de intermitenc...

Full description

Bibliographic Details
Main Authors: Adolfo Rene Santa Cruz Rodriguez, Camila Corrêa
Format: Article
Language:English
Published: Universidad Nacional de Colombia 2017-10-01
Series:Dyna
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/dyna/article/view/63141
Description
Summary:Este artículo tiene como objetivo estudiar la previsión de la demanda intermitente de un tipo específico de pieza de reposición en una industria brasilera de sistemas de refrigeración que comercializa sus productos en el mercado latinoamericano. La demanda es caracterizada en términos de intermitencia y variabilidad. Los resultados son calculados usando métodos clásicos de previsión intermitente fuera de la muestra: Croston, Aproximación Syntetos-Boylan (SBA), Corrección Shale-Boylan-Johnston (SBJ), Algoritmo de Previsión de Agregación Múltiple (MAPA) y modelos basados en Redes Neuronales Artificiales (RNA). El Error Cuadrático Medio (RMSE) y Desvío Medio Absoluto (MAE) son utilizados para efectos de comparación y selección del modelo de previsión. El análisis comparativo de los resultados muestra que las previsiones basadas en modelos RNA simple de tres capas y entrenadas con el algoritmo Resilient Backpropagation presentan mejor desempeño. Los cálculos fueron realizados con el software R, RStudio, bibliotecas “forecast”, “tsintermittent” y “neuralnet”.
ISSN:0012-7353
2346-2183