Light control of G protein signaling pathways by a novel photopigment.
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6166976?pdf=render |
id |
doaj-377b88cc53604f66a1c66f06f1584b35 |
---|---|
record_format |
Article |
spelling |
doaj-377b88cc53604f66a1c66f06f1584b352020-11-25T02:28:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011310e020501510.1371/journal.pone.0205015Light control of G protein signaling pathways by a novel photopigment.Tomás OsornoOscar ArenasNelson J Ramírez-SuarezFabio A EcheverryMaría Del Pilar GomezEnrico NasiChannelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice-as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop-important to confer specificity of interaction between 7TMDRs and G-proteins-with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways.http://europepmc.org/articles/PMC6166976?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tomás Osorno Oscar Arenas Nelson J Ramírez-Suarez Fabio A Echeverry María Del Pilar Gomez Enrico Nasi |
spellingShingle |
Tomás Osorno Oscar Arenas Nelson J Ramírez-Suarez Fabio A Echeverry María Del Pilar Gomez Enrico Nasi Light control of G protein signaling pathways by a novel photopigment. PLoS ONE |
author_facet |
Tomás Osorno Oscar Arenas Nelson J Ramírez-Suarez Fabio A Echeverry María Del Pilar Gomez Enrico Nasi |
author_sort |
Tomás Osorno |
title |
Light control of G protein signaling pathways by a novel photopigment. |
title_short |
Light control of G protein signaling pathways by a novel photopigment. |
title_full |
Light control of G protein signaling pathways by a novel photopigment. |
title_fullStr |
Light control of G protein signaling pathways by a novel photopigment. |
title_full_unstemmed |
Light control of G protein signaling pathways by a novel photopigment. |
title_sort |
light control of g protein signaling pathways by a novel photopigment. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
Channelopsins and photo-regulated ion channels make it possible to use light to control electrical activity of cells. This powerful approach has lead to a veritable explosion of applications, though it is limited to changing membrane voltage of the target cells. An enormous potential could be tapped if similar opto-genetic techniques could be extended to the control of chemical signaling pathways. Photopigments from invertebrate photoreceptors are an obvious choice-as they do not bleach upon illumination -however, their functional expression has been problematic. We exploited an unusual opsin, pScop2, recently identified in ciliary photoreceptors of scallop. Phylogenetically, it is closer to vertebrate opsins, and offers the advantage of being a bi-stable photopigment. We inserted its coding sequence and a fluorescent protein reporter into plasmid vectors and demonstrated heterologous expression in various mammalian cell lines. HEK 293 cells were selected as a heterologous system for functional analysis, because wild type cells displayed the largest currents in response to the G-protein activator, GTP-γ-S. A line of HEK cells stably transfected with pScop2 was generated; after reconstitution of the photopigment with retinal, light responses were obtained in some cells, albeit of modest amplitude. In native photoreceptors pScop2 couples to Go; HEK cells express poorly this G-protein, but have a prominent Gq/PLC pathway linked to internal Ca mobilization. To enhance pScop2 competence to tap into this pathway, we swapped its third intracellular loop-important to confer specificity of interaction between 7TMDRs and G-proteins-with that of a Gq-linked opsin which we cloned from microvillar photoreceptors present in the same retina. The chimeric construct was evaluated by a Ca fluorescence assay, and was shown to mediate a robust mobilization of internal calcium in response to illumination. The results project pScop2 as a potentially powerful optogenetic tool to control signaling pathways. |
url |
http://europepmc.org/articles/PMC6166976?pdf=render |
work_keys_str_mv |
AT tomasosorno lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT oscararenas lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT nelsonjramirezsuarez lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT fabioaecheverry lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT mariadelpilargomez lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment AT enriconasi lightcontrolofgproteinsignalingpathwaysbyanovelphotopigment |
_version_ |
1724835310032912384 |