Effect of side-chain length in lignin model compound on MnO2 oxidation: comparison of oxidations between C6-C2- and C6-C1-type compounds

Abstract Monomeric C6-C2-type lignin model compounds with a p-hydroxyphenyl (H), guaiacyl (G), syringyl (S), or p-ethylphenyl (E) nucleus (1-phenylethanol derivatives) were individually oxidized by MnO2 at a pH of 1.5 and room temperature. The results were compared with those of the corresponding C6...

Full description

Bibliographic Details
Main Authors: Shirong Sun, Tomoya Yokoyama
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of Wood Science
Subjects:
Online Access:https://doi.org/10.1186/s10086-021-01964-w
Description
Summary:Abstract Monomeric C6-C2-type lignin model compounds with a p-hydroxyphenyl (H), guaiacyl (G), syringyl (S), or p-ethylphenyl (E) nucleus (1-phenylethanol derivatives) were individually oxidized by MnO2 at a pH of 1.5 and room temperature. The results were compared with those of the corresponding C6-C1-type benzyl alcohol derivatives obtained in our recent report to examine the effect of the presence of the β-methyl group on the oxidation. The presence decelerated the oxidation regardless of the type of aromatic nucleus, although it did not change the order of the oxidation rates: G > S >> H > E. This deceleration results from the steric factor of the β-methyl group in the C6-C2-type compounds. The MnO2 oxidations of the corresponding C6-C2-type compounds deuterated at their α-(benzyl)positions showed that the magnitudes of the kinetic isotope effects are smaller than those observed in the oxidations of the corresponding C6-C1-type compounds, regardless of the type of aromatic nucleus. These smaller magnitudes suggest that the presence of the β-methyl group shifts the initial oxidation mode of MnO2 from direct oxidation of the benzyl position to one-electron oxidation of the aromatic nucleus. Only the S-type compounds afforded products via degradation of the aromatic nuclei.
ISSN:1435-0211
1611-4663