Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.

<h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols...

Full description

Bibliographic Details
Main Authors: Evan L Floyd, Lurdes Queimado, Jun Wang, James L Regens, David L Johnson
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0210147
id doaj-3770b8102d6147238dfa458bcd9eaa97
record_format Article
spelling doaj-3770b8102d6147238dfa458bcd9eaa972021-03-04T10:38:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011312e021014710.1371/journal.pone.0210147Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.Evan L FloydLurdes QueimadoJun WangJames L RegensDavid L Johnson<h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols produced at power outputs spanning the operating range typical of second generation variable voltage EC devices.<h4>Methods</h4>EC aerosol was characterized from a single coil atomizer powered by a variable voltage EC battery at the minimum and maximum dial settings (3.3, 11.2 Watts, W), and a lab controlled power supply (3-11.9 W). Aerosol particle size distribution was measured by a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer, spanning 16 nm to 19.8 μm. A mouth puff was simulated using a 100 mL glass syringe.<h4>Results</h4>Consistent with prior studies, sub-micron EC aerosol size distributions were bimodal, with peaks at 40 and 200 nm, however a previously unreported third mode was observed at approximately 1000 nm. The ~1000 nm mode accounted for 7-20x the aerosol mass of the smaller modes. Increasing atomizer power decreased count concentration of particles <600 nm but increased particle count >600 nm. Particle mass distribution shifted toward micron sized particles with increasing power and increased the respirable fraction of aerosol, likely due to increased coagulation and condensation around nano-sized particles.<h4>Conclusions</h4>Vaping power greatly affects EC aerosol count and mass distribution. Mouth puffed EC aerosol spans a much wider particle size range than previously reported, although the major portion of the mass is still well within the alveolar size range the larger particles will deposit within the oro-pharyngeal cavity at 2-3x greater efficiency than in alveoli. These observations have major clinical implications, as aerosol particle size distribution determines deposition sites along the respiratory tract. The results of this experiment stress the need for further research to inform the design, regulation and use of e-cigarette products.https://doi.org/10.1371/journal.pone.0210147
collection DOAJ
language English
format Article
sources DOAJ
author Evan L Floyd
Lurdes Queimado
Jun Wang
James L Regens
David L Johnson
spellingShingle Evan L Floyd
Lurdes Queimado
Jun Wang
James L Regens
David L Johnson
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
PLoS ONE
author_facet Evan L Floyd
Lurdes Queimado
Jun Wang
James L Regens
David L Johnson
author_sort Evan L Floyd
title Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
title_short Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
title_full Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
title_fullStr Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
title_full_unstemmed Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
title_sort electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2018-01-01
description <h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols produced at power outputs spanning the operating range typical of second generation variable voltage EC devices.<h4>Methods</h4>EC aerosol was characterized from a single coil atomizer powered by a variable voltage EC battery at the minimum and maximum dial settings (3.3, 11.2 Watts, W), and a lab controlled power supply (3-11.9 W). Aerosol particle size distribution was measured by a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer, spanning 16 nm to 19.8 μm. A mouth puff was simulated using a 100 mL glass syringe.<h4>Results</h4>Consistent with prior studies, sub-micron EC aerosol size distributions were bimodal, with peaks at 40 and 200 nm, however a previously unreported third mode was observed at approximately 1000 nm. The ~1000 nm mode accounted for 7-20x the aerosol mass of the smaller modes. Increasing atomizer power decreased count concentration of particles <600 nm but increased particle count >600 nm. Particle mass distribution shifted toward micron sized particles with increasing power and increased the respirable fraction of aerosol, likely due to increased coagulation and condensation around nano-sized particles.<h4>Conclusions</h4>Vaping power greatly affects EC aerosol count and mass distribution. Mouth puffed EC aerosol spans a much wider particle size range than previously reported, although the major portion of the mass is still well within the alveolar size range the larger particles will deposit within the oro-pharyngeal cavity at 2-3x greater efficiency than in alveoli. These observations have major clinical implications, as aerosol particle size distribution determines deposition sites along the respiratory tract. The results of this experiment stress the need for further research to inform the design, regulation and use of e-cigarette products.
url https://doi.org/10.1371/journal.pone.0210147
work_keys_str_mv AT evanlfloyd electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol
AT lurdesqueimado electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol
AT junwang electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol
AT jameslregens electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol
AT davidljohnson electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol
_version_ 1714805087448072192