Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.
<h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0210147 |
id |
doaj-3770b8102d6147238dfa458bcd9eaa97 |
---|---|
record_format |
Article |
spelling |
doaj-3770b8102d6147238dfa458bcd9eaa972021-03-04T10:38:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011312e021014710.1371/journal.pone.0210147Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol.Evan L FloydLurdes QueimadoJun WangJames L RegensDavid L Johnson<h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols produced at power outputs spanning the operating range typical of second generation variable voltage EC devices.<h4>Methods</h4>EC aerosol was characterized from a single coil atomizer powered by a variable voltage EC battery at the minimum and maximum dial settings (3.3, 11.2 Watts, W), and a lab controlled power supply (3-11.9 W). Aerosol particle size distribution was measured by a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer, spanning 16 nm to 19.8 μm. A mouth puff was simulated using a 100 mL glass syringe.<h4>Results</h4>Consistent with prior studies, sub-micron EC aerosol size distributions were bimodal, with peaks at 40 and 200 nm, however a previously unreported third mode was observed at approximately 1000 nm. The ~1000 nm mode accounted for 7-20x the aerosol mass of the smaller modes. Increasing atomizer power decreased count concentration of particles <600 nm but increased particle count >600 nm. Particle mass distribution shifted toward micron sized particles with increasing power and increased the respirable fraction of aerosol, likely due to increased coagulation and condensation around nano-sized particles.<h4>Conclusions</h4>Vaping power greatly affects EC aerosol count and mass distribution. Mouth puffed EC aerosol spans a much wider particle size range than previously reported, although the major portion of the mass is still well within the alveolar size range the larger particles will deposit within the oro-pharyngeal cavity at 2-3x greater efficiency than in alveoli. These observations have major clinical implications, as aerosol particle size distribution determines deposition sites along the respiratory tract. The results of this experiment stress the need for further research to inform the design, regulation and use of e-cigarette products.https://doi.org/10.1371/journal.pone.0210147 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Evan L Floyd Lurdes Queimado Jun Wang James L Regens David L Johnson |
spellingShingle |
Evan L Floyd Lurdes Queimado Jun Wang James L Regens David L Johnson Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. PLoS ONE |
author_facet |
Evan L Floyd Lurdes Queimado Jun Wang James L Regens David L Johnson |
author_sort |
Evan L Floyd |
title |
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
title_short |
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
title_full |
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
title_fullStr |
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
title_full_unstemmed |
Electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
title_sort |
electronic cigarette power affects count concentration and particle size distribution of vaping aerosol. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
<h4>Introduction</h4>Electronic cigarettes (EC) have evolved rapidly toward higher powered devices that produce more vaping aerosol and a more satisfying vaping experience. This research characterized the particle size distribution and estimated the mass concentration of vaping aerosols produced at power outputs spanning the operating range typical of second generation variable voltage EC devices.<h4>Methods</h4>EC aerosol was characterized from a single coil atomizer powered by a variable voltage EC battery at the minimum and maximum dial settings (3.3, 11.2 Watts, W), and a lab controlled power supply (3-11.9 W). Aerosol particle size distribution was measured by a Scanning Mobility Particle Sizer and Aerodynamic Particle Sizer, spanning 16 nm to 19.8 μm. A mouth puff was simulated using a 100 mL glass syringe.<h4>Results</h4>Consistent with prior studies, sub-micron EC aerosol size distributions were bimodal, with peaks at 40 and 200 nm, however a previously unreported third mode was observed at approximately 1000 nm. The ~1000 nm mode accounted for 7-20x the aerosol mass of the smaller modes. Increasing atomizer power decreased count concentration of particles <600 nm but increased particle count >600 nm. Particle mass distribution shifted toward micron sized particles with increasing power and increased the respirable fraction of aerosol, likely due to increased coagulation and condensation around nano-sized particles.<h4>Conclusions</h4>Vaping power greatly affects EC aerosol count and mass distribution. Mouth puffed EC aerosol spans a much wider particle size range than previously reported, although the major portion of the mass is still well within the alveolar size range the larger particles will deposit within the oro-pharyngeal cavity at 2-3x greater efficiency than in alveoli. These observations have major clinical implications, as aerosol particle size distribution determines deposition sites along the respiratory tract. The results of this experiment stress the need for further research to inform the design, regulation and use of e-cigarette products. |
url |
https://doi.org/10.1371/journal.pone.0210147 |
work_keys_str_mv |
AT evanlfloyd electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol AT lurdesqueimado electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol AT junwang electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol AT jameslregens electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol AT davidljohnson electroniccigarettepoweraffectscountconcentrationandparticlesizedistributionofvapingaerosol |
_version_ |
1714805087448072192 |