Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats

Background: Central 5-HT2A and 5-HT2C serotonergic receptors are mainly involved in the control of nigrostriatal and mesolimbic dopaminergic neuronal activity has been well proved and established. 5-HT has facilitatory effect on stimulated dopamine release by stimulating central 5-HT2A receptors and...

Full description

Bibliographic Details
Main Authors: Vandana M. Thorat, Chitra C. Khanwelkar, Somnath M. Matule, Pratibha S. Salve, Smita A. Surle-Patil, S. Seshla
Format: Article
Language:English
Published: Krishna Institute of Medical Sciences University 2019-01-01
Series:Journal of Krishna Institute of Medical Sciences University
Subjects:
Online Access:http://www.jkimsu.com/jkimsu-vol8no1/JKIMSU,%20Vol.%208,%20No.%201,%20January-March%202019%20Page%2061-72.pdf
id doaj-376b822878754eda86b7b66196393b9d
record_format Article
spelling doaj-376b822878754eda86b7b66196393b9d2020-11-24T21:54:42ZengKrishna Institute of Medical Sciences UniversityJournal of Krishna Institute of Medical Sciences University2231-42612231-42612019-01-0108016172Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino RatsVandana M. Thorat0Chitra C. Khanwelkar1Somnath M. Matule2Pratibha S. Salve3Smita A. Surle-Patil 4S. Seshla5Department of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaDepartment of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaDepartment of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaDepartment of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaDepartment of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaDepartment of Pharmacology, Krishna Institute of Medical Sciences, Malkapur, Karad-415110 (Maharashtra) IndiaBackground: Central 5-HT2A and 5-HT2C serotonergic receptors are mainly involved in the control of nigrostriatal and mesolimbic dopaminergic neuronal activity has been well proved and established. 5-HT has facilitatory effect on stimulated dopamine release by stimulating central 5-HT2A receptors and inhibitory effect by stimulating 5-HT2C receptors. Aim and Objectives: To evaluate 5-HT2A and 5-HT2C receptor blocking activity of Mirtazapine (MIR) and the effect of mirtazapine pre-treatment on Ergometrine (ERG) induced behaviours, Fluoxetine (FLU) induced penile erections and Haloperidol (HAL) induced catalepsy in rats. Material and Methods: Each group was subdivided into different subgroups consisting 6 animals in each. Control group received Dimethyl Sulfoxide (DMSO) and other groups received different doses of mirtazapine one hour before ERG/FLU/HAL. Values obtained from control group were compared with all remaining groups pre-treatment with different doses of MIR. Results: MIR (MIR) at 2.5, 5, 10 and 20 mg/kg intraperitoneally (i.p) did not produce any per se effects. Pre-treatment with 5, 10 and 20 mg/kg i.p. MIR significantly antagonised ERG induced behaviours. 5 mg/kg i.p. MIR significantly antagonised whereas 10 and 20 mg/kg i.p. MIR abolished FLU (10 mg/kg) induced penile erections in rats. MIR 5 and 20 mg/kg i.p. significantly antagonised HAL (1mg/kg) induced catalepsy at 1 hr testing time interval while 10 and 20 mg/kg MIR significantly antagonised HAL (1 mg/kg) induced catalepsy at 2 hr testing time interval. Conclusion: Our results indicate that MIR at 5, 10 and 20 mg/kg possesses 5-HT2A and 5-HT2C receptors blocking activity. At 5, 10 and 20 mg/kg MIR, by blocking central 5-HT2C receptors predominantly, causes release of dopamine from nigrostriatal dopaminergic neurons and therefore antagonizes HAL induced catalepsy.http://www.jkimsu.com/jkimsu-vol8no1/JKIMSU,%20Vol.%208,%20No.%201,%20January-March%202019%20Page%2061-72.pdfMirtazapineErgometrineFluoxetineHaloperidolCatalepsyPenile Erections
collection DOAJ
language English
format Article
sources DOAJ
author Vandana M. Thorat
Chitra C. Khanwelkar
Somnath M. Matule
Pratibha S. Salve
Smita A. Surle-Patil
S. Seshla
spellingShingle Vandana M. Thorat
Chitra C. Khanwelkar
Somnath M. Matule
Pratibha S. Salve
Smita A. Surle-Patil
S. Seshla
Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
Journal of Krishna Institute of Medical Sciences University
Mirtazapine
Ergometrine
Fluoxetine
Haloperidol
Catalepsy
Penile Erections
author_facet Vandana M. Thorat
Chitra C. Khanwelkar
Somnath M. Matule
Pratibha S. Salve
Smita A. Surle-Patil
S. Seshla
author_sort Vandana M. Thorat
title Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
title_short Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
title_full Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
title_fullStr Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
title_full_unstemmed Effect of Mirtazapine Pre-treatment on Haloperidol, Ergometrine and Fluoxetine Induced Behaviours in Albino Rats
title_sort effect of mirtazapine pre-treatment on haloperidol, ergometrine and fluoxetine induced behaviours in albino rats
publisher Krishna Institute of Medical Sciences University
series Journal of Krishna Institute of Medical Sciences University
issn 2231-4261
2231-4261
publishDate 2019-01-01
description Background: Central 5-HT2A and 5-HT2C serotonergic receptors are mainly involved in the control of nigrostriatal and mesolimbic dopaminergic neuronal activity has been well proved and established. 5-HT has facilitatory effect on stimulated dopamine release by stimulating central 5-HT2A receptors and inhibitory effect by stimulating 5-HT2C receptors. Aim and Objectives: To evaluate 5-HT2A and 5-HT2C receptor blocking activity of Mirtazapine (MIR) and the effect of mirtazapine pre-treatment on Ergometrine (ERG) induced behaviours, Fluoxetine (FLU) induced penile erections and Haloperidol (HAL) induced catalepsy in rats. Material and Methods: Each group was subdivided into different subgroups consisting 6 animals in each. Control group received Dimethyl Sulfoxide (DMSO) and other groups received different doses of mirtazapine one hour before ERG/FLU/HAL. Values obtained from control group were compared with all remaining groups pre-treatment with different doses of MIR. Results: MIR (MIR) at 2.5, 5, 10 and 20 mg/kg intraperitoneally (i.p) did not produce any per se effects. Pre-treatment with 5, 10 and 20 mg/kg i.p. MIR significantly antagonised ERG induced behaviours. 5 mg/kg i.p. MIR significantly antagonised whereas 10 and 20 mg/kg i.p. MIR abolished FLU (10 mg/kg) induced penile erections in rats. MIR 5 and 20 mg/kg i.p. significantly antagonised HAL (1mg/kg) induced catalepsy at 1 hr testing time interval while 10 and 20 mg/kg MIR significantly antagonised HAL (1 mg/kg) induced catalepsy at 2 hr testing time interval. Conclusion: Our results indicate that MIR at 5, 10 and 20 mg/kg possesses 5-HT2A and 5-HT2C receptors blocking activity. At 5, 10 and 20 mg/kg MIR, by blocking central 5-HT2C receptors predominantly, causes release of dopamine from nigrostriatal dopaminergic neurons and therefore antagonizes HAL induced catalepsy.
topic Mirtazapine
Ergometrine
Fluoxetine
Haloperidol
Catalepsy
Penile Erections
url http://www.jkimsu.com/jkimsu-vol8no1/JKIMSU,%20Vol.%208,%20No.%201,%20January-March%202019%20Page%2061-72.pdf
work_keys_str_mv AT vandanamthorat effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
AT chitrackhanwelkar effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
AT somnathmmatule effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
AT pratibhassalve effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
AT smitaasurlepatil effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
AT sseshla effectofmirtazapinepretreatmentonhaloperidolergometrineandfluoxetineinducedbehavioursinalbinorats
_version_ 1725866328460361728