Summary: | <h4>Purpose</h4>The purpose of this study was to analyse the relationship between several parameters of neuromuscular performance with dynamic postural control using a Bayesian Network Classifiers (BN) based analysis.<h4>Methods</h4>The y-balance test (measure of dynamic postural control), isokinetic (concentric and eccentric) knee flexion and extension strength, isometric hip abduction and adduction strength, lower extremity joint range of motion (ROM) and core stability were assessed in 44 elite male futsal players. A feature selection process was carried out before building a BN (using the Tabu search algorithm) for each leg. The BN models built were used to make belief updating processes to study the individual and concurrent contributions of the selected parameters of neuromuscular performance on dynamic postural control.<h4>Results</h4>The BNs generated using the selected features by the algorithms correlation attribute evaluator and chi squared reported the highest evaluation criteria (area under the receiver operating characteristic curve [AUC]) for the dominant (AUC = 0.899) and non-dominant (AUC = 0.879) legs, respectively.<h4>Conclusions</h4>The BNs demonstrated that performance achieved in the y-balance test appears to be widely influenced by hip and knee flexion and ankle dorsiflexion ROM measures in the sagittal plane, as well as by measures of static but mainly dynamic core stability in the frontal plane. Therefore, training interventions aimed at improving or maintaining dynamic postural control in elite male futsal players should include, among other things, exercises that produce ROM scores equal or higher than 127° of hip flexion, 132.5° of knee flexion as well as 34° and 30.5° of ankle dorsiflexion with the knee flexed and extended, respectively. Likewise, these training interventions should also include exercises to maintain or improve both the static and dynamic (medial-lateral plane) core stability so that futsal players can achieve medial radial error values lower than 6.69 and 8.79 mm, respectively.
|