Optimal Design and Dynamic Performance Analysis Based on the Asymmetric-Damping Vehicle ISD Suspension

This paper concerns the optimal problem of the vehicle ISD (inerter-spring-damper) suspension based on the asymmetric-damping effect. In order to explore the benefits of the asymmetric damping, a quarter car model of the four-element ISD suspension is built by considering the symmetric and asymmetri...

Full description

Bibliographic Details
Main Authors: Yujie Shen, Mengqi Jia, Kai Yang, Zhong Chen, Long Chen
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/9996563
Description
Summary:This paper concerns the optimal problem of the vehicle ISD (inerter-spring-damper) suspension based on the asymmetric-damping effect. In order to explore the benefits of the asymmetric damping, a quarter car model of the four-element ISD suspension is built by considering the symmetric and asymmetric reciprocating damping factors. The parameters of the proposed vehicle ISD suspension with symmetric-damping and asymmetric-damping features are optimized by means of the genetic algorithm in single-objective scenario and multiobjective scenario, respectively. The dynamic performances are analyzed through simulations in time and frequency domains, and the impacts of the compression and tensile damping on the body acceleration, the suspension working space, and the dynamic tire load are discussed. Results indicate that, compared with the conventional passive suspension, the proposed ISD suspensions manifest excellent vibration isolation performance, and the asymmetric reciprocating damping ISD suspension even showcases extra improving space of the dynamic performances except for the dynamic tire load in the impulse input condition. It seems that the dynamic performance of the vehicle ISD suspension will be much superior when considering the asymmetric reciprocating damping factors.
ISSN:1875-9203