Block copolymer electrolytes for fuel cells and secondary batteries, the small angle neutron scattering inputs

This paper aims at giving an overview on the importance of scattering, and more specifically neutron scattering, for probing the nanomorphology of polymer electrolytes made of block copolymers. Two types of self-assembled polymer electrolyte materials will be discussed: (i) the ionomer membranes use...

Full description

Bibliographic Details
Main Author: Rubatat Laurent
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201818803002
Description
Summary:This paper aims at giving an overview on the importance of scattering, and more specifically neutron scattering, for probing the nanomorphology of polymer electrolytes made of block copolymers. Two types of self-assembled polymer electrolyte materials will be discussed: (i) the ionomer membranes used in fuel cell and (ii) the solid polyelectrolytes used in secondary batteries. Both are used to physically separate the electrodes in the respective electrochemical devices and are expected to have a high ion transport capacity so as good chemical and mechanical stabilities. Unfortunately, in most cases improving one property leads to the degradation of the others. Nonetheless, through block copolymers selfassembly it is possible to tackle this issue; indeed, antagonist properties can be decoupled and associated within controlled nano-morphologies. This aspect will be discussed and supported by examples based on published studies; in parallel useful scattering analytical tools and models will be presented along the paper and detailed in annex.
ISSN:2100-014X