On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer
The 3D Carreau fluid flow through a porous and stretching (shrinking) sheet is examined analytically by taking into account the effects of mass transfer, thermal radiation, and Hall current. The model equations, which consist of coupled partial differential equations (PDEs), are simplified to ordina...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Coatings |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-6412/11/5/566 |
id |
doaj-373b34ffc9b4484bbcd46d5ebad51947 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shahid Khan Mahmoud M. Selim Aziz Khan Asad Ullah Thabet Abdeljawad Ikramullah Muhammad Ayaz Wali Khan Mashwani |
spellingShingle |
Shahid Khan Mahmoud M. Selim Aziz Khan Asad Ullah Thabet Abdeljawad Ikramullah Muhammad Ayaz Wali Khan Mashwani On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer Coatings thermal radiations magnetic field Carreau fluid stretching/shrinking surface Hall effect nonlinear radiations |
author_facet |
Shahid Khan Mahmoud M. Selim Aziz Khan Asad Ullah Thabet Abdeljawad Ikramullah Muhammad Ayaz Wali Khan Mashwani |
author_sort |
Shahid Khan |
title |
On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer |
title_short |
On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer |
title_full |
On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer |
title_fullStr |
On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer |
title_full_unstemmed |
On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass Transfer |
title_sort |
on the analysis of the non-newtonian fluid flow past a stretching/shrinking permeable surface with heat and mass transfer |
publisher |
MDPI AG |
series |
Coatings |
issn |
2079-6412 |
publishDate |
2021-05-01 |
description |
The 3D Carreau fluid flow through a porous and stretching (shrinking) sheet is examined analytically by taking into account the effects of mass transfer, thermal radiation, and Hall current. The model equations, which consist of coupled partial differential equations (PDEs), are simplified to ordinary differential equations (ODEs) through appropriate similarity relations. The analytical procedure of HAM (homotopy analysis method) is employed to solve the coupled set of ODEs. The functional dependence of the hydromagnetic 3D Carreau fluid flow on the pertinent parameters are displayed through various plots. It is found that the x-component of velocity gradient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><msup><mrow></mrow><mo>′</mo></msup></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) enhances with the higher values of the Hall and shrinking parameters (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>ϱ</mi></mrow></semantics></math></inline-formula>), while it reduces with magnetic parameter and Weissenberg number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mi>W</mi><mi>e</mi></mrow></semantics></math></inline-formula>). The y-component of fluid velocity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>) rises with the augmenting values of <i>m</i> and <i>M</i>, while it drops with the augmenting viscous nature of the Carreau fluid associated with the varying Weissenberg number. The fluid temperature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula> enhances with the increasing values of radiation parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>d</mi></mrow></semantics></math></inline-formula>) and Dufour number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>u</mi></mrow></semantics></math></inline-formula>), while it drops with the rising Prandtl number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula>). The concentration field (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>) augments with the rising Soret number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>r</mi></mrow></semantics></math></inline-formula>) while drops with the augmenting Schmidt number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>c</mi></mrow></semantics></math></inline-formula>). The variation of the skin friction coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>f</mi><mi>x</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>f</mi><mi>z</mi></mrow></msub></semantics></math></inline-formula>), Nusselt number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>) and Sherwood number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>h</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>) with changing values of these governing parameters are described through different tables. The present and previous published results agreement validates the applied analytical procedure. |
topic |
thermal radiations magnetic field Carreau fluid stretching/shrinking surface Hall effect nonlinear radiations |
url |
https://www.mdpi.com/2079-6412/11/5/566 |
work_keys_str_mv |
AT shahidkhan ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT mahmoudmselim ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT azizkhan ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT asadullah ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT thabetabdeljawad ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT ikramullah ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT muhammadayaz ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer AT walikhanmashwani ontheanalysisofthenonnewtonianfluidflowpastastretchingshrinkingpermeablesurfacewithheatandmasstransfer |
_version_ |
1721416420492836864 |
spelling |
doaj-373b34ffc9b4484bbcd46d5ebad519472021-05-31T23:51:05ZengMDPI AGCoatings2079-64122021-05-011156656610.3390/coatings11050566On the Analysis of the Non-Newtonian Fluid Flow Past a Stretching/Shrinking Permeable Surface with Heat and Mass TransferShahid Khan0Mahmoud M. Selim1Aziz Khan2Asad Ullah3Thabet Abdeljawad4Ikramullah5Muhammad Ayaz6Wali Khan Mashwani7Institute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics, Al-Aflaj College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj 710-11912, Saudi ArabiaDepartment of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi ArabiaDepartment of Mathematical Sciences, The University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi ArabiaDepartment of Physics, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, PakistanDepartment of Mathematics, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, PakistanInstitute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, Khyber Pakhtunkhwa, PakistanThe 3D Carreau fluid flow through a porous and stretching (shrinking) sheet is examined analytically by taking into account the effects of mass transfer, thermal radiation, and Hall current. The model equations, which consist of coupled partial differential equations (PDEs), are simplified to ordinary differential equations (ODEs) through appropriate similarity relations. The analytical procedure of HAM (homotopy analysis method) is employed to solve the coupled set of ODEs. The functional dependence of the hydromagnetic 3D Carreau fluid flow on the pertinent parameters are displayed through various plots. It is found that the x-component of velocity gradient (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>f</mi><msup><mrow></mrow><mo>′</mo></msup></msup><mrow><mo>(</mo><mi>η</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) enhances with the higher values of the Hall and shrinking parameters (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>,</mo><mi>ϱ</mi></mrow></semantics></math></inline-formula>), while it reduces with magnetic parameter and Weissenberg number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>,</mo><mi>W</mi><mi>e</mi></mrow></semantics></math></inline-formula>). The y-component of fluid velocity (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>g</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>) rises with the augmenting values of <i>m</i> and <i>M</i>, while it drops with the augmenting viscous nature of the Carreau fluid associated with the varying Weissenberg number. The fluid temperature <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>θ</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula> enhances with the increasing values of radiation parameter (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><mi>d</mi></mrow></semantics></math></inline-formula>) and Dufour number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><mi>u</mi></mrow></semantics></math></inline-formula>), while it drops with the rising Prandtl number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mi>r</mi></mrow></semantics></math></inline-formula>). The concentration field (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ϕ</mi><mo>(</mo><mi>η</mi><mo>)</mo></mrow></semantics></math></inline-formula>) augments with the rising Soret number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>r</mi></mrow></semantics></math></inline-formula>) while drops with the augmenting Schmidt number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>c</mi></mrow></semantics></math></inline-formula>). The variation of the skin friction coefficients (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>f</mi><mi>x</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>C</mi><mrow><mi>f</mi><mi>z</mi></mrow></msub></semantics></math></inline-formula>), Nusselt number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>u</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>) and Sherwood number (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>h</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>) with changing values of these governing parameters are described through different tables. The present and previous published results agreement validates the applied analytical procedure.https://www.mdpi.com/2079-6412/11/5/566thermal radiationsmagnetic fieldCarreau fluidstretching/shrinking surfaceHall effectnonlinear radiations |