Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion

Analyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscent...

Full description

Bibliographic Details
Main Authors: Jan Dorazil, Rene Repp, Thomas Kropfreiter, Richard Pruller, Kamil Riha, Franz Hlawatsch
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9274301/
id doaj-372d7d22d9fe4e9289f5fd475b9194ba
record_format Article
spelling doaj-372d7d22d9fe4e9289f5fd475b9194ba2021-03-30T04:30:59ZengIEEEIEEE Access2169-35362020-01-01822250622251910.1109/ACCESS.2020.30417969274301Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data FusionJan Dorazil0https://orcid.org/0000-0002-3974-0597Rene Repp1Thomas Kropfreiter2https://orcid.org/0000-0001-7186-7072Richard Pruller3https://orcid.org/0000-0003-3811-2879Kamil Riha4https://orcid.org/0000-0002-6196-5215Franz Hlawatsch5https://orcid.org/0000-0001-9010-9285Institute of Telecommunications, TU Wien, Vienna, AustriaAustrian Academy of Sciences, Acoustics Research Institute, Vienna, AustriaInstitute of Telecommunications, TU Wien, Vienna, AustriaInstitute of Telecommunications, TU Wien, Vienna, AustriaDepartment of Telecommunications, Brno University of Technology, Brno, Czech RepublicInstitute of Telecommunications, TU Wien, Vienna, AustriaAnalyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results show that the proposed method outperforms a recently proposed optical flow based method.https://ieeexplore.ieee.org/document/9274301/Atherosclerosisdata fusionunscented Kalman Filtermotion estimationultrasonographycarotid artery
collection DOAJ
language English
format Article
sources DOAJ
author Jan Dorazil
Rene Repp
Thomas Kropfreiter
Richard Pruller
Kamil Riha
Franz Hlawatsch
spellingShingle Jan Dorazil
Rene Repp
Thomas Kropfreiter
Richard Pruller
Kamil Riha
Franz Hlawatsch
Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
IEEE Access
Atherosclerosis
data fusion
unscented Kalman Filter
motion estimation
ultrasonography
carotid artery
author_facet Jan Dorazil
Rene Repp
Thomas Kropfreiter
Richard Pruller
Kamil Riha
Franz Hlawatsch
author_sort Jan Dorazil
title Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
title_short Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
title_full Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
title_fullStr Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
title_full_unstemmed Tracking Carotid Artery Wall Motion Using an Unscented Kalman Filter and Data Fusion
title_sort tracking carotid artery wall motion using an unscented kalman filter and data fusion
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2020-01-01
description Analyzing the motion of the common carotid artery (CCA) wall yields effective indicators for atherosclerosis. In this work, we propose a state-space model and a tracking method for estimating the time-varying CCA wall radius from a B-mode ultrasound sequence of arbitrary length. We employ an unscented Kalman filter that fuses two sets of measurements produced by an optical flow algorithm and a CCA wall localization algorithm. This fusion-and-tracking approach ensures that feature drift, which tends to impair optical flow based methods, is compensated in a temporally consistent manner. Simulation results show that the proposed method outperforms a recently proposed optical flow based method.
topic Atherosclerosis
data fusion
unscented Kalman Filter
motion estimation
ultrasonography
carotid artery
url https://ieeexplore.ieee.org/document/9274301/
work_keys_str_mv AT jandorazil trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
AT renerepp trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
AT thomaskropfreiter trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
AT richardpruller trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
AT kamilriha trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
AT franzhlawatsch trackingcarotidarterywallmotionusinganunscentedkalmanfilteranddatafusion
_version_ 1724181632597884928