Highly oxygenated organic molecules produced by the oxidation of benzene and toluene in a wide range of OH exposure and NO<sub><i>x</i></sub> conditions
<p>Oxidation of aromatic volatile organic compounds (VOCs) leads to the formation of tropospheric ozone and secondary organic aerosol, for which gaseous oxygenated products are important intermediates. We show, herein, the experimental results of highly oxygenated organic molecules (HOMs) prod...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-08-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/21/12005/2021/acp-21-12005-2021.pdf |
Summary: | <p>Oxidation of aromatic volatile organic compounds (VOCs) leads to the formation of tropospheric ozone and secondary organic aerosol, for which gaseous oxygenated products are important intermediates. We show,
herein, the experimental results of highly oxygenated organic molecules (HOMs) produced by the oxidation of benzene and toluene in a wide range of OH exposure and NO<span class="inline-formula"><sub><i>x</i></sub></span> conditions. The results suggest that multigeneration OH oxidation plays an important role in the product distribution, which likely proceeds more preferably via H subtraction than OH addition for early generation products from light aromatics. More oxygenated products present in our study than in previous flow tube studies, highlighting the impact of experimental conditions on product distributions. The formation of dimeric products, however, was suppressed and might be unfavorable under conditions of high OH exposure and low NO<span class="inline-formula"><sub><i>x</i></sub></span> in toluene oxidation. Under high-NO<span class="inline-formula"><sub><i>x</i></sub></span> conditions, nitrogen-containing multifunctional products are formed, while the formation of other HOMs is suppressed. Products containing two nitrogen atoms become more important as the NO<span class="inline-formula"><sub><i>x</i></sub></span> level increases, and the concentrations of these compounds depend significantly on <span class="inline-formula">NO<sub>2</sub></span>.
The highly oxygenated nitrogen-containing products might be peroxyacyl nitrates, implying a prolonged effective lifetime of <span class="inline-formula">RO<sub>2</sub></span> that
facilitates regional pollution. Our results call for further investigation
on the roles of high-<span class="inline-formula">NO<sub>2</sub></span> conditions in the oxidation of aromatic VOCs.</p> |
---|---|
ISSN: | 1680-7316 1680-7324 |