Synthesis, structural and electrical characterizations of LaSrCu0.4Al0.6O4−δ

Abstract A new compound LaSrCu0.4Al0.6O4−δ has been prepared by sol gel method, annealed at 1623 K in oxygen gas flow and examined by X-ray diffraction. Rietveld refinement shows that the sample adopts the K2NiF4-type structure, space group I4/mmm (a = 3.7694(2) and c = 12.8248(5) Ǻ, Z = 2). Vibrati...

Full description

Bibliographic Details
Main Authors: B. Negri, M. Leoni, R. Ben Hassen
Format: Article
Language:English
Published: SpringerOpen 2017-10-01
Series:Materials for Renewable and Sustainable Energy
Subjects:
Online Access:http://link.springer.com/article/10.1007/s40243-017-0106-4
Description
Summary:Abstract A new compound LaSrCu0.4Al0.6O4−δ has been prepared by sol gel method, annealed at 1623 K in oxygen gas flow and examined by X-ray diffraction. Rietveld refinement shows that the sample adopts the K2NiF4-type structure, space group I4/mmm (a = 3.7694(2) and c = 12.8248(5) Ǻ, Z = 2). Vibrational properties were investigated using Raman scattering and the most characteristic vibrations are discussed with reference to the available structural data. Differential thermal analysis shows two endothermic effects at 329 and 593 K and one exothermic at 693 K. Dielectric study as a function of temperature in the frequency range of 1 kHz–1 MHz has confirmed the observed phase transitions. The value of the measured dielectric constant depends on the frequency and undergoes a large increase near the phase transition temperatures indicating a diffuse behavior of these transitions. Variation of conductivity as a function of temperature shows that the compound has a semiconducting behavior. Oxygen vacancies could be the possible ionic charge carriers. The electrical transport mechanism agrees with Adiabatic Small Polaron Hopping model.
ISSN:2194-1459
2194-1467