Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera).
White birch (Betula papyrifera) is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availabilit...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4833294?pdf=render |
id |
doaj-370cce3371d8466f8aa3954ca55146f3 |
---|---|
record_format |
Article |
spelling |
doaj-370cce3371d8466f8aa3954ca55146f32020-11-24T21:52:15ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01114e015376210.1371/journal.pone.0153762Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera).Gabriel TheriaultPaul MichaelKabwe NkongoloWhite birch (Betula papyrifera) is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana) enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1) develop and characterize the B. papyrifera transcriptome, 2) assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3) describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome), binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S-transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees.http://europepmc.org/articles/PMC4833294?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gabriel Theriault Paul Michael Kabwe Nkongolo |
spellingShingle |
Gabriel Theriault Paul Michael Kabwe Nkongolo Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). PLoS ONE |
author_facet |
Gabriel Theriault Paul Michael Kabwe Nkongolo |
author_sort |
Gabriel Theriault |
title |
Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). |
title_short |
Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). |
title_full |
Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). |
title_fullStr |
Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). |
title_full_unstemmed |
Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera). |
title_sort |
comprehensive transcriptome analysis of response to nickel stress in white birch (betula papyrifera). |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
White birch (Betula papyrifera) is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana) enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1) develop and characterize the B. papyrifera transcriptome, 2) assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3) describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome), binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S-transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees. |
url |
http://europepmc.org/articles/PMC4833294?pdf=render |
work_keys_str_mv |
AT gabrieltheriault comprehensivetranscriptomeanalysisofresponsetonickelstressinwhitebirchbetulapapyrifera AT paulmichael comprehensivetranscriptomeanalysisofresponsetonickelstressinwhitebirchbetulapapyrifera AT kabwenkongolo comprehensivetranscriptomeanalysisofresponsetonickelstressinwhitebirchbetulapapyrifera |
_version_ |
1725875891738771456 |