Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals

Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions throu...

Full description

Bibliographic Details
Main Authors: Yao Zhang, Ting-Song Du, Hao Wang, Yan-Jun Shen, Artion Kashuri
Format: Article
Language:English
Published: SpringerOpen 2018-02-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1639-5
id doaj-36f879a938d54b18a2a6d68922a6bcd7
record_format Article
spelling doaj-36f879a938d54b18a2a6d68922a6bcd72020-11-25T00:45:59ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-02-012018113010.1186/s13660-018-1639-5Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integralsYao Zhang0Ting-Song Du1Hao Wang2Yan-Jun Shen3Artion Kashuri4Department of Mathematics, College of Science, China Three Gorges UniversityDepartment of Mathematics, College of Science, China Three Gorges UniversityDepartment of Mathematics, College of Science, China Three Gorges UniversityHubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges UniversityDepartment of Mathematics, Faculty of Technical Science, University “Ismail Qemali”Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained.http://link.springer.com/article/10.1186/s13660-018-1639-5Hermite–Hadamard’s inequalitySimpson’s inequalityGeneralized ( m , h ) $(m,h)$ -preinvex functionsk-fractional integrals
collection DOAJ
language English
format Article
sources DOAJ
author Yao Zhang
Ting-Song Du
Hao Wang
Yan-Jun Shen
Artion Kashuri
spellingShingle Yao Zhang
Ting-Song Du
Hao Wang
Yan-Jun Shen
Artion Kashuri
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
Journal of Inequalities and Applications
Hermite–Hadamard’s inequality
Simpson’s inequality
Generalized ( m , h ) $(m,h)$ -preinvex functions
k-fractional integrals
author_facet Yao Zhang
Ting-Song Du
Hao Wang
Yan-Jun Shen
Artion Kashuri
author_sort Yao Zhang
title Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
title_short Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
title_full Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
title_fullStr Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
title_full_unstemmed Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
title_sort extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2018-02-01
description Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained.
topic Hermite–Hadamard’s inequality
Simpson’s inequality
Generalized ( m , h ) $(m,h)$ -preinvex functions
k-fractional integrals
url http://link.springer.com/article/10.1186/s13660-018-1639-5
work_keys_str_mv AT yaozhang extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals
AT tingsongdu extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals
AT haowang extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals
AT yanjunshen extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals
AT artionkashuri extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals
_version_ 1725267609369182208