Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals
Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions throu...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-02-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-018-1639-5 |
id |
doaj-36f879a938d54b18a2a6d68922a6bcd7 |
---|---|
record_format |
Article |
spelling |
doaj-36f879a938d54b18a2a6d68922a6bcd72020-11-25T00:45:59ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-02-012018113010.1186/s13660-018-1639-5Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integralsYao Zhang0Ting-Song Du1Hao Wang2Yan-Jun Shen3Artion Kashuri4Department of Mathematics, College of Science, China Three Gorges UniversityDepartment of Mathematics, College of Science, China Three Gorges UniversityDepartment of Mathematics, College of Science, China Three Gorges UniversityHubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges UniversityDepartment of Mathematics, Faculty of Technical Science, University “Ismail Qemali”Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained.http://link.springer.com/article/10.1186/s13660-018-1639-5Hermite–Hadamard’s inequalitySimpson’s inequalityGeneralized ( m , h ) $(m,h)$ -preinvex functionsk-fractional integrals |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yao Zhang Ting-Song Du Hao Wang Yan-Jun Shen Artion Kashuri |
spellingShingle |
Yao Zhang Ting-Song Du Hao Wang Yan-Jun Shen Artion Kashuri Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals Journal of Inequalities and Applications Hermite–Hadamard’s inequality Simpson’s inequality Generalized ( m , h ) $(m,h)$ -preinvex functions k-fractional integrals |
author_facet |
Yao Zhang Ting-Song Du Hao Wang Yan-Jun Shen Artion Kashuri |
author_sort |
Yao Zhang |
title |
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
title_short |
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
title_full |
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
title_fullStr |
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
title_full_unstemmed |
Extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
title_sort |
extensions of different type parameterized inequalities for generalized (m,h) $(m,h)$-preinvex mappings via k-fractional integrals |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2018-02-01 |
description |
Abstract The authors discover a general k-fractional integral identity with multi-parameters for twice differentiable functions. By using this integral equation, the authors derive some new bounds on Hermite–Hadamard’s and Simpson’s inequalities for generalized (m,h) $(m,h)$-preinvex functions through k-fractional integrals. By taking the special parameter values for various suitable choices of function h, some interesting results are also obtained. |
topic |
Hermite–Hadamard’s inequality Simpson’s inequality Generalized ( m , h ) $(m,h)$ -preinvex functions k-fractional integrals |
url |
http://link.springer.com/article/10.1186/s13660-018-1639-5 |
work_keys_str_mv |
AT yaozhang extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals AT tingsongdu extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals AT haowang extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals AT yanjunshen extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals AT artionkashuri extensionsofdifferenttypeparameterizedinequalitiesforgeneralizedmhmhpreinvexmappingsviakfractionalintegrals |
_version_ |
1725267609369182208 |