Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
Abstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-05-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-018-0998-7 |
id |
doaj-36eba1a99100482c883f4181f837a7ed |
---|---|
record_format |
Article |
spelling |
doaj-36eba1a99100482c883f4181f837a7ed2020-11-25T00:37:36ZengSpringerOpenBoundary Value Problems1687-27702018-05-012018111810.1186/s13661-018-0998-7Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functionsYunfeng Wei0Caisheng Chen1Hongwei Yang2Hongxue Song3College of Science, Hohai UniversityCollege of Science, Hohai UniversityCollege of Mathematics and Systems Science, Shandong University of Science and TechnologyCollege of Science, Hohai UniversityAbstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert u(x)-u(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}u=\mu g(x)\vert u \vert ^{\beta -2}u+\frac{a}{a+b}h(x)\vert u \vert ^{a-2}u\vert v \vert ^{b},&\mbox{in } \Omega , \\ M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert v(x)-v(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}v=\sigma f(x)\vert v \vert ^{\beta -2}v+\frac{b}{a+b}h(x)\vert v \vert ^{b-2}v\vert u \vert ^{a},&\mbox{in } \Omega , \\ u=v=0,&\mbox{in } { \mathbb {R} }^{N}\setminus \Omega , \end{cases}\displaystyle \end{aligned}$$ where Ω⊂RN $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, (−Δ)ps $(-\Delta )^{s}_{p}$ is the fractional p-Laplacian operator with 0<s<1<p $0< s<1<p$ and ps<N $ps< N $. a>1 $a>1$, b>1 $b>1$ satisfy 2<a+b<ps∗ $2< a+b< p_{s}^{*}$. 1<β<ps∗ $1<\beta <p_{s}^{*}$, ps∗=NpN−ps $p_{s}^{*}=\frac{Np}{N-ps}$ is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+λtτ $M(t)=k+\lambda t^{\tau }$, k>0 $k>0$, λ, τ≥0 $\tau \geq 0$, τ=0 $\tau =0$ if and only if λ=0 $\lambda =0$. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2<a+b<p≤p(τ+1)<β<ps∗ $2< a+b< p\leq p(\tau +1)<\beta <p_{s}^{*}$ and (μ,σ) $(\mu ,\sigma )$ belongs to a certain subset of R2 $\mathbb {R} ^{2}$. Also, by using the mountain pass theorem, we prove that there exist λ1≥λ0 $\lambda _{1}\geq \lambda_{0}$ such that the system admits at least a nontrivial solution for λ∈(0,λ0) $\lambda \in (0,\lambda_{0})$ and no nontrivial solution for λ>λ1 $\lambda >\lambda_{1}$ under the assumptions μ=σ=0 $\mu =\sigma =0$ and p<a+b<min{p(τ+1),ps∗} $p< a+b<\min \{p(\tau +1),p_{s}^{*}\}$.http://link.springer.com/article/10.1186/s13661-018-0998-7Fractional p-Kirchhoff systemMultiplicitySign-changing weight functionsNehari manifoldMountain pass theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yunfeng Wei Caisheng Chen Hongwei Yang Hongxue Song |
spellingShingle |
Yunfeng Wei Caisheng Chen Hongwei Yang Hongxue Song Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions Boundary Value Problems Fractional p-Kirchhoff system Multiplicity Sign-changing weight functions Nehari manifold Mountain pass theorem |
author_facet |
Yunfeng Wei Caisheng Chen Hongwei Yang Hongxue Song |
author_sort |
Yunfeng Wei |
title |
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions |
title_short |
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions |
title_full |
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions |
title_fullStr |
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions |
title_full_unstemmed |
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions |
title_sort |
multiplicity of solutions for a class of fractional p-kirchhoff system with sign-changing weight functions |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2018-05-01 |
description |
Abstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert u(x)-u(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}u=\mu g(x)\vert u \vert ^{\beta -2}u+\frac{a}{a+b}h(x)\vert u \vert ^{a-2}u\vert v \vert ^{b},&\mbox{in } \Omega , \\ M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert v(x)-v(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}v=\sigma f(x)\vert v \vert ^{\beta -2}v+\frac{b}{a+b}h(x)\vert v \vert ^{b-2}v\vert u \vert ^{a},&\mbox{in } \Omega , \\ u=v=0,&\mbox{in } { \mathbb {R} }^{N}\setminus \Omega , \end{cases}\displaystyle \end{aligned}$$ where Ω⊂RN $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, (−Δ)ps $(-\Delta )^{s}_{p}$ is the fractional p-Laplacian operator with 0<s<1<p $0< s<1<p$ and ps<N $ps< N $. a>1 $a>1$, b>1 $b>1$ satisfy 2<a+b<ps∗ $2< a+b< p_{s}^{*}$. 1<β<ps∗ $1<\beta <p_{s}^{*}$, ps∗=NpN−ps $p_{s}^{*}=\frac{Np}{N-ps}$ is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+λtτ $M(t)=k+\lambda t^{\tau }$, k>0 $k>0$, λ, τ≥0 $\tau \geq 0$, τ=0 $\tau =0$ if and only if λ=0 $\lambda =0$. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2<a+b<p≤p(τ+1)<β<ps∗ $2< a+b< p\leq p(\tau +1)<\beta <p_{s}^{*}$ and (μ,σ) $(\mu ,\sigma )$ belongs to a certain subset of R2 $\mathbb {R} ^{2}$. Also, by using the mountain pass theorem, we prove that there exist λ1≥λ0 $\lambda _{1}\geq \lambda_{0}$ such that the system admits at least a nontrivial solution for λ∈(0,λ0) $\lambda \in (0,\lambda_{0})$ and no nontrivial solution for λ>λ1 $\lambda >\lambda_{1}$ under the assumptions μ=σ=0 $\mu =\sigma =0$ and p<a+b<min{p(τ+1),ps∗} $p< a+b<\min \{p(\tau +1),p_{s}^{*}\}$. |
topic |
Fractional p-Kirchhoff system Multiplicity Sign-changing weight functions Nehari manifold Mountain pass theorem |
url |
http://link.springer.com/article/10.1186/s13661-018-0998-7 |
work_keys_str_mv |
AT yunfengwei multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions AT caishengchen multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions AT hongweiyang multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions AT hongxuesong multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions |
_version_ |
1725300434654986240 |