Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions

Abstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\in...

Full description

Bibliographic Details
Main Authors: Yunfeng Wei, Caisheng Chen, Hongwei Yang, Hongxue Song
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-018-0998-7
id doaj-36eba1a99100482c883f4181f837a7ed
record_format Article
spelling doaj-36eba1a99100482c883f4181f837a7ed2020-11-25T00:37:36ZengSpringerOpenBoundary Value Problems1687-27702018-05-012018111810.1186/s13661-018-0998-7Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functionsYunfeng Wei0Caisheng Chen1Hongwei Yang2Hongxue Song3College of Science, Hohai UniversityCollege of Science, Hohai UniversityCollege of Mathematics and Systems Science, Shandong University of Science and TechnologyCollege of Science, Hohai UniversityAbstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert u(x)-u(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}u=\mu g(x)\vert u \vert ^{\beta -2}u+\frac{a}{a+b}h(x)\vert u \vert ^{a-2}u\vert v \vert ^{b},&\mbox{in } \Omega , \\ M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert v(x)-v(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}v=\sigma f(x)\vert v \vert ^{\beta -2}v+\frac{b}{a+b}h(x)\vert v \vert ^{b-2}v\vert u \vert ^{a},&\mbox{in } \Omega , \\ u=v=0,&\mbox{in } { \mathbb {R} }^{N}\setminus \Omega , \end{cases}\displaystyle \end{aligned}$$ where Ω⊂RN $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, (−Δ)ps $(-\Delta )^{s}_{p}$ is the fractional p-Laplacian operator with 0<s<1<p $0< s<1<p$ and ps<N $ps< N $. a>1 $a>1$, b>1 $b>1$ satisfy 2<a+b<ps∗ $2< a+b< p_{s}^{*}$. 1<β<ps∗ $1<\beta <p_{s}^{*}$, ps∗=NpN−ps $p_{s}^{*}=\frac{Np}{N-ps}$ is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+λtτ $M(t)=k+\lambda t^{\tau }$, k>0 $k>0$, λ, τ≥0 $\tau \geq 0$, τ=0 $\tau =0$ if and only if λ=0 $\lambda =0$. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2<a+b<p≤p(τ+1)<β<ps∗ $2< a+b< p\leq p(\tau +1)<\beta <p_{s}^{*}$ and (μ,σ) $(\mu ,\sigma )$ belongs to a certain subset of R2 $\mathbb {R} ^{2}$. Also, by using the mountain pass theorem, we prove that there exist λ1≥λ0 $\lambda _{1}\geq \lambda_{0}$ such that the system admits at least a nontrivial solution for λ∈(0,λ0) $\lambda \in (0,\lambda_{0})$ and no nontrivial solution for λ>λ1 $\lambda >\lambda_{1}$ under the assumptions μ=σ=0 $\mu =\sigma =0$ and p<a+b<min{p(τ+1),ps∗} $p< a+b<\min \{p(\tau +1),p_{s}^{*}\}$.http://link.springer.com/article/10.1186/s13661-018-0998-7Fractional p-Kirchhoff systemMultiplicitySign-changing weight functionsNehari manifoldMountain pass theorem
collection DOAJ
language English
format Article
sources DOAJ
author Yunfeng Wei
Caisheng Chen
Hongwei Yang
Hongxue Song
spellingShingle Yunfeng Wei
Caisheng Chen
Hongwei Yang
Hongxue Song
Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
Boundary Value Problems
Fractional p-Kirchhoff system
Multiplicity
Sign-changing weight functions
Nehari manifold
Mountain pass theorem
author_facet Yunfeng Wei
Caisheng Chen
Hongwei Yang
Hongxue Song
author_sort Yunfeng Wei
title Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
title_short Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
title_full Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
title_fullStr Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
title_full_unstemmed Multiplicity of solutions for a class of fractional p-Kirchhoff system with sign-changing weight functions
title_sort multiplicity of solutions for a class of fractional p-kirchhoff system with sign-changing weight functions
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2018-05-01
description Abstract In this paper, we investigate the fractional p-Kirchhoff -type system: {M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω, $$\begin{aligned} \textstyle\begin{cases} M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert u(x)-u(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}u=\mu g(x)\vert u \vert ^{\beta -2}u+\frac{a}{a+b}h(x)\vert u \vert ^{a-2}u\vert v \vert ^{b},&\mbox{in } \Omega , \\ M (\int_{{ \mathbb {R} }^{2N}}\frac{\vert v(x)-v(y) \vert ^{p}}{\vert x-y \vert ^{N+ps}}\,dx\,dy )(- \Delta )^{s}_{p}v=\sigma f(x)\vert v \vert ^{\beta -2}v+\frac{b}{a+b}h(x)\vert v \vert ^{b-2}v\vert u \vert ^{a},&\mbox{in } \Omega , \\ u=v=0,&\mbox{in } { \mathbb {R} }^{N}\setminus \Omega , \end{cases}\displaystyle \end{aligned}$$ where Ω⊂RN $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, (−Δ)ps $(-\Delta )^{s}_{p}$ is the fractional p-Laplacian operator with 0<s<1<p $0< s<1<p$ and ps<N $ps< N $. a>1 $a>1$, b>1 $b>1$ satisfy 2<a+b<ps∗ $2< a+b< p_{s}^{*}$. 1<β<ps∗ $1<\beta <p_{s}^{*}$, ps∗=NpN−ps $p_{s}^{*}=\frac{Np}{N-ps}$ is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+λtτ $M(t)=k+\lambda t^{\tau }$, k>0 $k>0$, λ, τ≥0 $\tau \geq 0$, τ=0 $\tau =0$ if and only if λ=0 $\lambda =0$. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2<a+b<p≤p(τ+1)<β<ps∗ $2< a+b< p\leq p(\tau +1)<\beta <p_{s}^{*}$ and (μ,σ) $(\mu ,\sigma )$ belongs to a certain subset of R2 $\mathbb {R} ^{2}$. Also, by using the mountain pass theorem, we prove that there exist λ1≥λ0 $\lambda _{1}\geq \lambda_{0}$ such that the system admits at least a nontrivial solution for λ∈(0,λ0) $\lambda \in (0,\lambda_{0})$ and no nontrivial solution for λ>λ1 $\lambda >\lambda_{1}$ under the assumptions μ=σ=0 $\mu =\sigma =0$ and p<a+b<min{p(τ+1),ps∗} $p< a+b<\min \{p(\tau +1),p_{s}^{*}\}$.
topic Fractional p-Kirchhoff system
Multiplicity
Sign-changing weight functions
Nehari manifold
Mountain pass theorem
url http://link.springer.com/article/10.1186/s13661-018-0998-7
work_keys_str_mv AT yunfengwei multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions
AT caishengchen multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions
AT hongweiyang multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions
AT hongxuesong multiplicityofsolutionsforaclassoffractionalpkirchhoffsystemwithsignchangingweightfunctions
_version_ 1725300434654986240