Addition of MWCNT-Al2O3 nanopowders to water- ethylene glycol (EG) base fluid for enhancing the thermal characteristics: Design an optimum feed-forward neural network
Prediction the thermal conductivity of nanofluids has been subject of many researches. Artificial Neural Networks are used to obtain thermal conductivity of NAnofluids because not only this method is fast and acurate but also it can reduce the Lab costs. To predict the thermal conductivity of water-...
Main Authors: | Shi Fuxi, Sajad Hamedi, Mehdi Hajian, Davood Toghraie, As'ad Alizadeh, Mabood Hekmatifar, Nima Sina |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-10-01
|
Series: | Case Studies in Thermal Engineering |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2214157X21004561 |
Similar Items
-
Predictive modelling of the LD50 activities of coumarin derivatives using neural statistical approaches: Electronic descriptor-based DFT
by: Rachid Hmamouchi, et al.
Published: (2016-07-01) -
The use of tree crown variables in over-bark diameter and volume prediction models
by: Özçelik R, et al.
Published: (2014-06-01) -
Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid
by: Shaopeng Tian, et al.
Published: (2021-08-01) -
Implementasi Pengolahan Citra Untuk Identifikasi Daun Tanaman Obat Menggunakan Levenberg-Marquardt Backpropagation
by: Atsilfia Alfath Syam, et al.
Published: (2021-06-01) -
Elaboración de un modelo neuronal artificial para la estimación de la demanda bioquímica de oxígeno en aguas marinas
by: Reynaldo Meza Castellar, et al.
Published: (2020-07-01)