A Comparison Analysis of Surrogate Safety Measures with Car-Following Perspectives for Advanced Driver Assistance System

Surrogate Safety Measure (SSM) is one of the most widely used methods for identifying future threats, such as rear-end collision. Various SSMs have been proposed for the application of Advanced Driver Assistance Systems (ADAS), including Forward Collision Warning System (FCWS) and Emergency Braking...

Full description

Bibliographic Details
Main Authors: Sehyun Tak, Sunghoon Kim, Donghoun Lee, Hwasoo Yeo
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2018/8040815
Description
Summary:Surrogate Safety Measure (SSM) is one of the most widely used methods for identifying future threats, such as rear-end collision. Various SSMs have been proposed for the application of Advanced Driver Assistance Systems (ADAS), including Forward Collision Warning System (FCWS) and Emergency Braking System (EBS). The existing SSMs have been mainly used for assessing criticality of a certain traffic situation or detecting critical actions, such as severe braking maneuvers and jerking before an accident. The ADAS shows different warning signals or movements from drivers’ driving behaviours depending on the SSM employed in the system, which may lead to low reliability and low satisfaction. In order to explore the characteristics of existing SSMs in terms of human driving behaviours, this study analyzes collision risks estimated by three different SSMs, including Time-To-Collision (TTC), Stopping Headway Distance (SHD), and Deceleration-based Surrogate Safety Measure (DSSM), based on two different car-following theories, such as action point model and asymmetric driving behaviour model. The results show that the estimated collision risks of the TTC and SHD only partially match the pattern of human driving behaviour. Furthermore, the TTC and SHD overestimate the collision risk in deceleration process, particularly when the subject vehicle is faster than its preceding vehicle. On the other hand, the DSSM shows well-matched results to the pattern of the human driving behaviour. It well represents the collision risk even when the preceding vehicle moves faster than the follower one. Moreover, unlike other SSMs, the DSSM shows a balanced performance to estimate the collision risk in both deceleration and acceleration phase. These research findings suggest that the DSSM has a great potential to enhance the driver’s compliance to the ADAS, since it can reflect how the driver perceives the collision risks according to the driving behaviours in the car-following situation.
ISSN:0197-6729
2042-3195