Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
Micromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple we...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/11/12/1082 |
id |
doaj-36ab9cbf85c04999a4381b4f3680d853 |
---|---|
record_format |
Article |
spelling |
doaj-36ab9cbf85c04999a4381b4f3680d8532020-12-07T00:01:34ZengMDPI AGMicromachines2072-666X2020-12-01111082108210.3390/mi11121082Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material ProcessingEbenezer Owusu-Ansah0Colin Dalton1Department of Electrical & Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, CanadaDepartment of Electrical & Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, CanadaMicromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple wet processing steps and isotropic etching profiles, making them unsuitable to fabricate complex, multi-depth features. Here, we report a simpler approach, femtosecond laser material processing (FLMP), to fabricate a 3D reservoir micromodel featuring 4 different depths—35, 70, 140, and 280 µm, over a large surface area (20 mm × 15 mm) in a borosilicate glass substrate. The dependence of etch depth on major processing parameters of FLMP, i.e., average laser fluence (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula>), and computer numerically controlled (CNC) processing speed (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>), was studied. A linear etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula> was determined while a three-phase exponential decay dependence was obtained for <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>. The accuracy of the method was investigated by using the etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula> relation as a model to predict input parameters required to machine the micromodel. This study shows the capability and robustness of FLMP to machine 3D multi-depth features that will be essential for the development, control, and fabrication of complex microfluidic geometries.https://www.mdpi.com/2072-666X/11/12/1082micromodelsporous media3D multi-depth channelslaser machiningfemtosecond laser micromachiningfemtosecond laser material processing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ebenezer Owusu-Ansah Colin Dalton |
spellingShingle |
Ebenezer Owusu-Ansah Colin Dalton Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing Micromachines micromodels porous media 3D multi-depth channels laser machining femtosecond laser micromachining femtosecond laser material processing |
author_facet |
Ebenezer Owusu-Ansah Colin Dalton |
author_sort |
Ebenezer Owusu-Ansah |
title |
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing |
title_short |
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing |
title_full |
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing |
title_fullStr |
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing |
title_full_unstemmed |
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing |
title_sort |
fabrication of a 3d multi-depth reservoir micromodel in borosilicate glass using femtosecond laser material processing |
publisher |
MDPI AG |
series |
Micromachines |
issn |
2072-666X |
publishDate |
2020-12-01 |
description |
Micromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple wet processing steps and isotropic etching profiles, making them unsuitable to fabricate complex, multi-depth features. Here, we report a simpler approach, femtosecond laser material processing (FLMP), to fabricate a 3D reservoir micromodel featuring 4 different depths—35, 70, 140, and 280 µm, over a large surface area (20 mm × 15 mm) in a borosilicate glass substrate. The dependence of etch depth on major processing parameters of FLMP, i.e., average laser fluence (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula>), and computer numerically controlled (CNC) processing speed (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>), was studied. A linear etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula> was determined while a three-phase exponential decay dependence was obtained for <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>. The accuracy of the method was investigated by using the etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula> relation as a model to predict input parameters required to machine the micromodel. This study shows the capability and robustness of FLMP to machine 3D multi-depth features that will be essential for the development, control, and fabrication of complex microfluidic geometries. |
topic |
micromodels porous media 3D multi-depth channels laser machining femtosecond laser micromachining femtosecond laser material processing |
url |
https://www.mdpi.com/2072-666X/11/12/1082 |
work_keys_str_mv |
AT ebenezerowusuansah fabricationofa3dmultidepthreservoirmicromodelinborosilicateglassusingfemtosecondlasermaterialprocessing AT colindalton fabricationofa3dmultidepthreservoirmicromodelinborosilicateglassusingfemtosecondlasermaterialprocessing |
_version_ |
1724398147083436032 |