Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing

Micromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple we...

Full description

Bibliographic Details
Main Authors: Ebenezer Owusu-Ansah, Colin Dalton
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/11/12/1082
id doaj-36ab9cbf85c04999a4381b4f3680d853
record_format Article
spelling doaj-36ab9cbf85c04999a4381b4f3680d8532020-12-07T00:01:34ZengMDPI AGMicromachines2072-666X2020-12-01111082108210.3390/mi11121082Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material ProcessingEbenezer Owusu-Ansah0Colin Dalton1Department of Electrical & Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, CanadaDepartment of Electrical & Computer Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, CanadaMicromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple wet processing steps and isotropic etching profiles, making them unsuitable to fabricate complex, multi-depth features. Here, we report a simpler approach, femtosecond laser material processing (FLMP), to fabricate a 3D reservoir micromodel featuring 4 different depths—35, 70, 140, and 280 µm, over a large surface area (20 mm × 15 mm) in a borosilicate glass substrate. The dependence of etch depth on major processing parameters of FLMP, i.e., average laser fluence (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula>), and computer numerically controlled (CNC) processing speed (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>), was studied. A linear etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula> was determined while a three-phase exponential decay dependence was obtained for <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>. The accuracy of the method was investigated by using the etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula> relation as a model to predict input parameters required to machine the micromodel. This study shows the capability and robustness of FLMP to machine 3D multi-depth features that will be essential for the development, control, and fabrication of complex microfluidic geometries.https://www.mdpi.com/2072-666X/11/12/1082micromodelsporous media3D multi-depth channelslaser machiningfemtosecond laser micromachiningfemtosecond laser material processing
collection DOAJ
language English
format Article
sources DOAJ
author Ebenezer Owusu-Ansah
Colin Dalton
spellingShingle Ebenezer Owusu-Ansah
Colin Dalton
Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
Micromachines
micromodels
porous media
3D multi-depth channels
laser machining
femtosecond laser micromachining
femtosecond laser material processing
author_facet Ebenezer Owusu-Ansah
Colin Dalton
author_sort Ebenezer Owusu-Ansah
title Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
title_short Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
title_full Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
title_fullStr Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
title_full_unstemmed Fabrication of a 3D Multi-Depth Reservoir Micromodel in Borosilicate Glass Using Femtosecond Laser Material Processing
title_sort fabrication of a 3d multi-depth reservoir micromodel in borosilicate glass using femtosecond laser material processing
publisher MDPI AG
series Micromachines
issn 2072-666X
publishDate 2020-12-01
description Micromodels are ideal candidates for microfluidic transport investigations, and they have been used for many applications, including oil recovery and carbon dioxide storage. Conventional fabrication methods (e.g., photolithography and chemical etching) are beset with many issues, such as multiple wet processing steps and isotropic etching profiles, making them unsuitable to fabricate complex, multi-depth features. Here, we report a simpler approach, femtosecond laser material processing (FLMP), to fabricate a 3D reservoir micromodel featuring 4 different depths—35, 70, 140, and 280 µm, over a large surface area (20 mm × 15 mm) in a borosilicate glass substrate. The dependence of etch depth on major processing parameters of FLMP, i.e., average laser fluence (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula>), and computer numerically controlled (CNC) processing speed (<inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>), was studied. A linear etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>LF</mi></mrow><mrow><mi>av</mi></mrow></msub></mrow></semantics></math></inline-formula> was determined while a three-phase exponential decay dependence was obtained for <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula>. The accuracy of the method was investigated by using the etch depth dependence on <inline-formula><math display="inline"><semantics><mrow><msub><mrow><mi>PS</mi></mrow><mrow><mi>CNC</mi></mrow></msub></mrow></semantics></math></inline-formula> relation as a model to predict input parameters required to machine the micromodel. This study shows the capability and robustness of FLMP to machine 3D multi-depth features that will be essential for the development, control, and fabrication of complex microfluidic geometries.
topic micromodels
porous media
3D multi-depth channels
laser machining
femtosecond laser micromachining
femtosecond laser material processing
url https://www.mdpi.com/2072-666X/11/12/1082
work_keys_str_mv AT ebenezerowusuansah fabricationofa3dmultidepthreservoirmicromodelinborosilicateglassusingfemtosecondlasermaterialprocessing
AT colindalton fabricationofa3dmultidepthreservoirmicromodelinborosilicateglassusingfemtosecondlasermaterialprocessing
_version_ 1724398147083436032