Summary: | The $p$-stage Quantum Approximate Optimization Algorithm (QAOA$_p$) is a promising approach for combinatorial optimization on noisy intermediate-scale quantum (NISQ) devices, but its theoretical behavior is not well understood beyond $p=1$. We analyze QAOA$_2$ for the $\textit{maximum cut problem}$ (MAX-CUT), deriving a graph-size-independent expression for the expected cut fraction on any $D$-regular graph of girth $> 5$ (i.e. without triangles, squares, or pentagons).
We show that for all degrees $D \ge 2$ and every $D$-regular graph $G$ of girth $> 5$, QAOA$_2$ has a larger expected cut fraction than QAOA$_1$ on $G$. However, we also show that there exists a $2$-local randomized $\textit{classical}$ algorithm $A$ such that $A$ has a larger expected cut fraction than QAOA$_2$ on all $G$. This supports our conjecture that for every constant $p$, there exists a local classical MAX-CUT algorithm that performs as well as QAOA$_p$ on all graphs.
|