Effect of Si-Al Compounds on Fire Properties of Ultra-low Density Fiberboard
An ultra-low density fiberboard was made of plant fiber using a liquid frothing approach. The inflammability of the plant fiber limited its application as a candidate for building insulation materials and packaging buffering materials. Si-Al compounds were introduced into the foaming system because...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2014-03-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_2_2415_Niu_Fire_Properties_Fiberboard |
Summary: | An ultra-low density fiberboard was made of plant fiber using a liquid frothing approach. The inflammability of the plant fiber limited its application as a candidate for building insulation materials and packaging buffering materials. Si-Al compounds were introduced into the foaming system because of the high temperature resistance of Si and Al compounds. The results from energy-dispersive spectroscopy suggested that the Si and Al relatively evenly covered the surface of the fibers, and their weight ratios in the material increased as a function of the amount of Si-Al compounds. The increasing weight ratios of Si and Al affected the fire properties of the material, reducing the released amount of heat, smoke, and off-gases such as CO and CO2, as well as decreasing the mass loss percentage, shown through the use of a Cone Calorimeter. It follows that Si-Al compounds have an evident collaborative effect on the halogen fire retardant. The system can effectively restrain the fire hazard intensity and the yields of solid and gas volatiles. |
---|---|
ISSN: | 1930-2126 1930-2126 |