Summary: | Due to interface phenomena such as compaction pores, a mismatch of the pore structure, etc., moisture transfer in multi-layered building elements can deviate from the moisture transfer observed for the combination of the separate materials. Several studies on interface phenomena make use of kaolin clay to provide – as a reference – a perfect hydraulic contact between materials. This paper investigates, based on a series of imbibition experiments, whether kaolin clay truly creates this perfect contact, and thus, whether the hydraulic interface resistance between materials can be nullified by use of kaolin clay. For a low absorptive material or a large distance between the contact interface and the water surface, composite samples put together with kaolin clay show an identical water uptake curve as observed for homogeneous samples. For a material with a high absorptivity and a contact interface closer to the water plain, however, even with kaolin clay a hydraulic interface resistance is observed and estimated to be in the order of 6 000 m/s till 12 000 m/s. If present, such an interface resistance is furthermore shown to have no impact on the water uptake curve for samples composed of low absorptive bricks or with a contact interface further away from the water plain.
|